【题目】如图,矩形
,
平面
,
、
、
分别是
、
、
的中点.
![]()
(1)求证:直线
平面
;
(2)求证:直线
直线
.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由已知中四边形ABCD为矩形,M、R分别是AB、CD的中点.易得AR∥CM,结合线面平行的判定定理,可得到直线AR∥平面PMC;
(2)由已知条件可得AB⊥平面PAD,即AB⊥PD,从而得到AB⊥平面MNR,进而得到直线MN⊥直线AB.
(1)∵四边形ABCD为矩形,M、R分别是AB、CD的中点.
∴AR∥CM
又∵AR平面PMC,CM平面PMC
∴直线AR∥平面PMC;
(2)连接RN、MR
![]()
∵PA⊥平面ABCDAB⊥PA
又AB⊥AD,PA∩AD=A,
平面
AB⊥PD
∵R、N分别是CD、PC的中点RN
PD, ∴
,
又∵AB⊥MRMR∩RN=R,
平面
且
平面
,
∴
.
科目:高中数学 来源: 题型:
【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的方程为
.
(1)当
时,试确定曲线
的形状及其焦点坐标;
(2)若直线
交曲线
于点
、
,线段
中点的横坐标为
,试问此时曲线
上是否存在不同的两点
、
关于直线
对称?
(3)当
为大于1的常数时,设
是曲线
上的一点,过点
作一条斜率为
的直线
,又设
为原点到直线
的距离,
分别为点
与曲线
两焦点的距离,求证
是一个定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方形
沿对角线
折成直二面角,下列结论:①异面直线
与
所成的角为
;②
;③
是等边三角形;④二面角
的平面角正切值是
;其中正确结论是______.(写出你认为正确的所有结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点
,在
轴截得的弦长为2.
(1)求动圆圆心的轨迹
的方程;
(2)若
为轨迹
上一动点,过点
作圆
的两条切线分别交
轴于
,
两点,求
面积的最小值,并求出此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
与
轴交于点
,直线
与抛物线
交于点
,
两点.直线
,
分别交椭圆
于点
、
(
,
与
不重合)
![]()
(1)求证:
;
(2)若
,求直线
的斜率
的值;
(3)若
为坐标原点,直线
交椭圆
于
,
,若
,且
,则
是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=15,O为AB上一点,且BO=10,线段OC、OD、MN为表演队列所在位置(M、N分别在线段OD、OC上),△OCD内的点P为领队位置,且P到OC、OD的距离分别为
、
,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
![]()
(1)当d为何值时,P为队列MN的中点;
(2)怎样安排M的位置才能使观赏效果最好?求出此时△OMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
是正方形,
平面
.
,
,
,
分别是
,
,
的中点.
(1)求证:平面
平面
.
(2)在线段
上确定一点
,使
平面
,并给出证明.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com