【题目】若a>0,b>0,且
+
=
.
(1)求a3+b3的最小值;
(2)是否存在a,b,使得2a+3b=6?并说明理由.
【答案】
(1)解:∵a>0,b>0,且
+
=
,
∴
=
+
≥2
,∴ab≥2,
当且仅当a=b=
时取等号.
∵a3+b3≥2
≥2
=4
,当且仅当a=b=
时取等号,
∴a3+b3的最小值为4
.
(2)解:∵2a+3b≥2
=2
,当且仅当2a=3b时,取等号.
而由(1)可知,2
≥2
=4
>6,
故不存在a,b,使得2a+3b=6成立.
【解析】(1)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(2)根据 ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.
【考点精析】解答此题的关键在于理解平均值不等式的相关知识,掌握平均不等式:![]()
,(当且仅当
时取
号即调和平均
几何平均
算术平均
平方平均)
.
科目:高中数学 来源: 题型:
【题目】若方程
所表示的曲线为C,给出下列四个命题:
①若C为椭圆,则
;
②若C为双曲线,则
或
;
③曲线C不可能是圆;
④若
,曲线C为椭圆,且焦点坐标为
;
⑤若
,曲线C为双曲线,且虚半轴长为
.
其中真命题的序号为____________.(把所有正确命题的序号都填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当
时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=cos(2x+
)+sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并写出f(x)取最大值时x的取值;
(3)设A,B,C为△ABC的三个内角,若cosB=
,f (
)=-
,且C为锐角,求sinA.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某百货公司1~6月份的销售量与利润的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程
x+
;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com