【题目】在平面直角坐标系
中,已知圆
的参数方程为
(
为参数),与圆
关于直线
对称的圆为
.以原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程是
.
(1)设直线
与
轴和
轴的交点分别为
,
,
为圆
上的任意一点,求
的最大值.
(2)过点
且与直线
平行的直线
交圆
于
,
两点,求
的值.
科目:高中数学 来源: 题型:
【题目】 在新冠肺炎疫情的影响下,重庆市教委响应“停课不停教,停课不停学”的号召进行线上教学,某校高三年级的甲、乙两个班中,根据某次数学测试成绩各选出5名学生参加数学建模竞赛,已知这次测试他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.
![]()
(1)求出
,
的值,且分别求甲、乙两个班中5名学生成绩的方差
、
,并根据结果,你认为应该选派哪一个班的学生参加决赛,并说明你的理由.
(2)从成绩在85分及以上的学生中随机抽取2名,用
表示来自甲班的人数,求随机变量X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式m-|x-2|≥1,其解集为[0,4].
(1)求m的值;
(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
经过点
,倾斜角为
,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴的正半轴为极轴建立极坐标系.
(1)写出直线
的极坐标方程和曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为4.且过点
.
(1)求椭圆E的方程;
(2)设
,
,
,过B点且斜率为
的直线l交椭圆E于另一点M,交x轴于点Q,直线AM与直线
相交于点P.证明:
(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各
次连续正常运行的时间长度(单位:天)数据,并绘制了如茎叶图:
![]()
(1)①设所采集的
个连续正常运行时间的中位数
,并将连续正常运行时间超过
和不超过
的次数填入下面的列联表:
超过 | 不超过 | |
改造前 |
|
|
改造后 |
|
|
②根据①中的列联表,能否有
的把握认为生产线技术改造前后的连续正常运行时间有差异?
附:
.
|
|
|
|
|
|
|
|
(2)工厂的生产线的运行需要进行维护,工厂对生产线的生产维护费用包括正常维护费、保障维护费两种.对生产线设定维护周期为
天(即从开工运行到第
天
进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为
万元/次;保障维护费第一次为
万元/周期,此后每增加一次则保障维护费增加
万元.现制定生产线一个生产周期(以
天计)内的维护方案:
,
、
、
、
.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及期望值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com