【题目】已知函数
,若存在常数
,对任意
都有
,则称函数
为T倍周期函数.
(1)判断
是否是T倍周期函数,并说明理由;
(2)证明
是T倍周期函数,且T的值是唯一的;
(3)若
是2倍周期函数,
,
,
表示
的前n项和,
,若
恒成立,求a的取值范围.
【答案】(1)不是,理由见解析;(2)证明见解析;(3)
或
.
【解析】
(1)假设
是T倍周期函数,推出矛盾即可说明
不是T倍周期函数;
(2)根据定义,可得到
对任意x恒成立,即可求出
的值,证明唯一性即可;
(3)由
是2倍周期函数,可求出
的奇数项和偶数项,进而可求得
和
,从而求得
的表达式,然后判断数列
的单调性,可求得
,使得
,解不等式即可.
(1)不是,
假设
是T倍周期函数,则
,
则
对任意x恒成立,
显然
不存在,所以
不是T倍周期函数.
(2)设
,
则
对任意x恒成立,
即
,则
,
下证唯一性:
若
,
矛盾,
若
,
矛盾
![]()
是唯一的;
(3)
,
,
,
…
,
所以
,
同理:
,
![]()
,
.
则
,
,
,
显然
时,
,
因为函数
在
上单调递减,
所以
时,数列
是递减数列,
![]()
,
![]()
恒成,
![]()
,
![]()
,
若
时,则
,解得
;
若
时,
,解得
,
综上,a的取值范围是
或
.
科目:高中数学 来源: 题型:
【题目】已知
,数列
、
满足:
,
,记
.
(1)若
,
,求数列
、
的通项公式;
(2)证明:数列
是等差数列;
(3)定义
,证明:若存在
,使得
、
为整数,且
有两个整数零点,则必有无穷多个
有两个整数零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
是椭圆
:
的左右两个焦点,过
的直线与
交于
,
两点(
在第一象限),
的周长为8,
的离心率为
.
(1)求
的方程;
(2)设
,
为
的左右顶点,直线
的斜率为
,
的斜率为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
,规定90分及以上为合格:
![]()
(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】日照一中为了落实“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)试用x表示S,并求S的取值范围;
(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为
,草坪的每平方米的造价为
(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于任意
都有
成立,试求
的取值范围;
(3)记
.当
时,函数
在区间
上有两个零点,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com