精英家教网 > 高中数学 > 题目详情
4.将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有(  )
A.240种B.180种C.150种D.540种

分析 根据题意,分2步进行分析:①、先将甲、乙等5位同学分成3组:需要分2种情况讨论,②、将分好的三组对应三所大学,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、先将甲、乙等5位同学分成3组:
若分成1-2-2的三组,有$\frac{{C}_{5}^{1}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{2}^{2}}$=15种分组方法,
若分成1-1-3的三组,有$\frac{{C}_{5}^{1}{C}_{4}^{1}{C}_{3}^{3}}{{A}_{2}^{2}}$=10种分组方法,
则将5人分成3组,有15+10=25种分组方法;
②、将分好的三组对应三所大学,有A33=6种情况,
则每所大学至少保送一人的不同保送方法25×6=150种;
故选:C.

点评 本题考查排列、组合的综合应用,注意先分组,在进行排列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.曲线y=lgx在x=1处的切线斜率是(  )
A.$\frac{1}{ln10}$B.ln10C.lneD.$\frac{1}{lne}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,g(x)=lnx+$\frac{a}{x}$(a>0).
(1)求函数f(x)的极值;
(2)若?x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用随机事件发生的频率去估算这个事件发生的概率.下列结论正确的是(  )
A.事件A发生的概率P(A)是0<P(A)<1
B.事件A发生的概率P(A)=0.999,则事件A是必然事件
C.用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%
D.某奖券中奖率为0.5,则某人购买此券10张,一定有5张中奖

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:3+3=5,q:5>2,则下列判断错误的是(  )
A.“p或q”为真,“非q”为假B.“p且q”为假,“非p”为假
C.“p且q”为假,“非p”为真D.“p且q”为假,“p或q”为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设变量x,y满足约束件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-5y+10≤0}\\{x+y-4≤0}\end{array}\right.$则目标函数z=3x-4y的最大值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.观察下列各式:1+$\frac{1}{2^2}<\frac{3}{2}1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3}1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4}$…照此规律,当n?N*时,1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}$<$\frac{2n+1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z=$\frac{2}{1-i}$(i是虚数单位),则|z|=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|-1<x<3},N={x|x2+2x-3<0},则集合M∩N等于(  )
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|-1<x<1}D.{x|-3<x<3}

查看答案和解析>>

同步练习册答案