【题目】把离心率
的双曲线
称为黄金双曲线.给出以下几个说法:
①双曲线
是黄金双曲线;
②若双曲线上一点
到两条渐近线的距离积等于
,则该双曲线是黄金双曲线;
③若
为左右焦点,
为左右顶点,
且
,则该双曲线是黄金双曲线;
④.若直线
经过右焦点
交双曲线于
两点,且
,
,则该双曲线是黄金双曲线;
其中正确命题的序号为 .
科目:高中数学 来源: 题型:
【题目】已知抛物线C的标准方程是![]()
(Ⅰ)求它的焦点坐标和准线方程;
(Ⅱ)直线
过已知抛物线C的焦点且倾斜角为45°,且与抛物线的交点为A、B,求线段AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的公比q>1,且满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log
,Sn=b1+b2+…+bn,求使
成立的正整数n的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线![]()
(1)化
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点P对应的参数为
,Q为
上的动点,求PQ的中点M到直线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆方程
+
=1(a>b>0),椭圆上一点到两焦点的距离和为4,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2.
(1)求椭圆方程;
(2)若M,N是椭圆C上的点,且直线OM与ON的斜率之积为﹣
,是否存在动点P(x0,y0),若
=
+2
,有x02+2y02为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点
的直线
的参数方程是
(
为参数).以平面直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程式为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
交于两点
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.给出下列结论:
①0<q<1;②a1a99-1<0;③T49的值是Tn中最大的;④使Tn>1成立的最大自然数n等于98.
其中所有正确结论的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
且满足
,数列
中,
对任意正整数![]()
(1)求数列
的通项公式;
(2)是否存在实数
,使得数列
是等比数列?若存在,请求出实数
及公比
的值,若不存在,请说明理由;
(3)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,某城市有一块半径为40
的半圆形(以
为圆心,
为直径)绿化区域,现计划对其进行改建,在
的延长线上取点
,使
,在半圆上选定一点
,改建后的绿化区域由扇形区域
和三角形区域
组成,其面积为
,设![]()
![]()
(1)写出
关于
的函数关系式
,并指出
的取值范围;
(2)试问
多大时,改建后的绿化区域面积
最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com