【题目】某中学组织了地理知识竞赛,从参加考试的学生中抽出40名学生,将其成绩(均为整数)分成六组
,
,…,
,其部分频率分布直方图如图所示.观察图形,回答下列问题.
![]()
(1)求成绩在
的频率,并补全这个频率分布直方图:
(2)估计这次考试的及格率(60分及以上为及格)和平均分;(计算时可以用组中值代替各组数据的平均值)
(3)从成绩在
和
的学生中选两人,求他们在同一分数段的概率.
【答案】(1)0.3
![]()
(2)75%;71
(3)![]()
【解析】
根据各组的频率之和等于1,即可得出成绩在
的频率。
根据题意,计算出
,
,
,
这四个组频率之和即可估计出本次考试的及格率;利用每组组中值乘该组的频率再求和 即可得出本次考试的平均分。
成绩在
的人数为4人,成绩在
的人数为2人,从成绩在
和
的学生中选两人,将分数段
的4人编号为
,
,
,
,将
分数段的2人编号为
,
,从中任选两人,则基本事件构成集合
共15个,其中同一分数段内的事件所含基本事件为7个,利用古典概型计算公式即可得出。
(1)因为各组的频率之和等于1,所以成绩在
的频率为
。
补全频率分布直方图如图所示:
![]()
(2)根据题意,60分及以上的分数在
,
,
,
这四个组,其频率之和为
,故本次考试的及格率为75%
利用中值估算学生成绩的平均分,则有
![]()
所以本次考试的平均分为71分。
(3)成绩在
的人数为
人,成绩在
的人数为
人
从成绩在
和
的学生中选两人,将分数段
的4人编号为
,
,
,
,将
分数段的2人编号为
,
,从中任选两人,则基本事件构成集合
![]()
共15个,其中同一分数段内所含基本事件为:
,
,
,
,
,
,![]()
共7个,故概率![]()
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求函数
的定义域;
(2)若函数
有且仅有一个零点,求实数m的取值范围;
(3)任取
,若不等式
对任意
恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时间著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异”.意思是:夹在两平行平面间的两个几何体,被平行于这两个平行平面的任何平面所载,若截得的两个截面面积总相等,则这两个几何体的体积相等.为计算球的体积,构造一个底面半径和高都与球半径相等的圆柱,然后再圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,运用祖暅原理可证明此几何体与半球体积相等(任何一个平面所载的两个截面面积都相等).将椭圆
绕
轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC-A1B1C1,侧面ABB1A1为菱形,侧面ACC1A1为正方形,侧面ABB1A1⊥侧面ACC1A1.
![]()
(1)求证:A1B⊥平面AB1C;
(2)若AB=2,∠ABB1=60°,求三棱锥C1-COB1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
,
时,求满足
的
的值;
(2)若函数
是定义在
上的奇函数.
①存在
,使得不等式
有解,求实数
的取值范围;
②若函数
满足
,若对任意
且
,不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;④测量∠A,∠C,∠B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中, 椭圆
的中心在坐标原点
,其右焦点为
,且点
在椭圆
上.
![]()
(1)求椭圆
的方程;
(2)设椭圆的左、右顶点分别为
,
是椭圆上异于
的任意一点,直线
交椭圆
于另一点
,直线
交直线
于
点, 求证:
三点在同一条直线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,对于任意的
,都有
, 当
时,
,且
.
( I ) 求
的值;
(II) 当
时,求函数
的最大值和最小值;
(III) 设函数
,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com