0  260254  260262  260268  260272  260278  260280  260284  260290  260292  260298  260304  260308  260310  260314  260320  260322  260328  260332  260334  260338  260340  260344  260346  260348  260349  260350  260352  260353  260354  260356  260358  260362  260364  260368  260370  260374  260380  260382  260388  260392  260394  260398  260404  260410  260412  260418  260422  260424  260430  260434  260440  260448  447090 

31.(2009北京理)(本小题共13分)

 在中,角的对边分别为

(Ⅰ)求的值;

(Ⅱ)求的面积.

解析 本题主要考查三角形中的三角函数变换及求值、诱导公式、三角形的面积公式等基础知识,主要考查基本运算能力.

解(Ⅰ)∵A、B、C为△ABC的内角,且

.

(Ⅱ)由(Ⅰ)知

  又∵,∴在△ABC中,由正弦定理,

.

∴△ABC的面积

试题详情

30.(2009北京文)(本小题共12分)已知函数.

(Ⅰ)求的最小正周期;

(Ⅱ)求在区间上的最大值和最小值.

解析 本题主要考查特殊角三角函数值、诱导公式、二倍角的正弦、三角函数在闭区间上的最值等基础知识,主要考查基本运算能力.

解(Ⅰ)∵

∴函数的最小正周期为.

(Ⅱ)由,∴

在区间上的最大值为1,最小值为.

试题详情

29.(2009全国卷Ⅰ理)在中,内角A、B、C的对边长分别为,已知,且 求b      

分析:此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) 过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.

解法一:在则由正弦定理及余弦定理有:化简并整理得:.又由已知.解得.      

解法二:由余弦定理得: .又,

所以…………………………………①

,即

由正弦定理得,故………………………②

由①,②解得

评析:从08年高考考纲中就明确提出要加强对正余弦定理的考查.在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.另外提醒:两纲中明确不再考的知识和方法了解就行,不必强化训练。

试题详情

28.(2009辽宁卷文)已知函数的图象如图所示,      

       

解析 由图象可得最小正周期为

     ∴T=  Þ  ω=

答案

试题详情

27.(2009上海卷文)函数的最小值是         

答案 

解析  ,所以最小值为:

试题详情

26.(2009年上海卷理)已知函数.项数为27的等差数列满足,且公差.若,则当=____________是,.

答案  14

解析  函数是增函数,显然又为奇函数,函数图象关于原点对称,因为

所以,所以当时,. 

试题详情

25.(2009年上海卷理)当,不等式成立,则实数的取值范围是_______________.

答案  k≤1

解析  作出的图象,要使不等式成立,由图可知须k≤1

试题详情

24.(2009年上海卷理)函数的最小值是_____________________ .

答案

解析 ,所以最小值为:

试题详情

23.(2009湖南卷理)若x∈(0, )则2tanx+tan(-x)的最小值为           

答案

解析 由,知所以当且仅当时取等号,即最小值是

试题详情

22.(2009宁夏海南卷文)已知函数的图像如图所示,则        

    

答案  0

解析 由图象知最小正周期T()=,故=3,又x时,f(x)=0,即2)=0,可得,所以,2=0

试题详情


同步练习册答案