0  399685  399693  399699  399703  399709  399711  399715  399721  399723  399729  399735  399739  399741  399745  399751  399753  399759  399763  399765  399769  399771  399775  399777  399779  399780  399781  399783  399784  399785  399787  399789  399793  399795  399799  399801  399805  399811  399813  399819  399823  399825  399829  399835  399841  399843  399849  399853  399855  399861  399865  399871  399879  447090 

8.(2008浙江温州)方程的解是(   )B

A.      B.        C.      D.

试题详情

7.(2008山东济南).如果xa+2y3与-3x3y2b-1是同类项,那么a、b的值分别是(  )A

A.  B.  C.  D.

试题详情

6.(2008湖南郴州)方程2x+1=0的解是(   )B

   A.        B.         C. 2        D.-2

试题详情

5.(2008  湖北  十堰)把方程去分母正确的是(  )   A

A. B. C.   D.

试题详情

4.(2008  湖北  荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正

方形,已知大正方形的面积是144,小正方形的面积是4,

若用xy表示矩形的长和宽(xy),则下列关系式中不正 

确的是(  )   D

  (A) x+y=12 .      (B) xy=2.

  (C) xy=35.    (D) x+y=144.

试题详情

3、(2008浙江义乌)已知互余,.设的度数分别为,下列方程组中符合题意的是(   )C

A.  B.   C.   D.

试题详情

2.(08浙江温州)方程的解是(   )B

A.      B.        C.      D.

试题详情

1.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是  (  )

A. 10x+20=100       B.10x-20=100     C. 20-10x=100           D.20x+10=100

答案:A

试题详情

22. (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

解:(1)因为,,,

所以,   即.

当m=0时,方程表示两直线,方程为;

时, 方程表示的是圆

时,方程表示的是椭圆;

时,方程表示的是双曲线.

(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组,即,

要使切线与轨迹E恒有两个交点A,B,

则使△=,

,即,   且

,

要使,  需使,即,

所以,  即,  即恒成立.

所以又因为直线为圆心在原点的圆的一条切线,

所以圆的半径为,, 所求的圆为.

当切线的斜率不存在时,切线为,与交于点也满足.

综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.

(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知,  即   ①,

因为与轨迹E只有一个公共点B1,

由(2)知,

有唯一解

则△=,   即,   ②

由①②得,  此时A,B重合为B1(x1,y1)点,

,所以,,

B1(x1,y1)点在椭圆上,所以,所以,

在直角三角形OA1B1中,因为当且仅当时取等号,所以,即

时|A1B1|取得最大值,最大值为1.

[命题立意]:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.

试题详情

21.(本小题满分12分)

已知函数,其中    

(1)    当满足什么条件时,取得极值?

(2)    已知,且在区间上单调递增,试用表示出的取值范围.

解:  (1)由已知得,令,得,

要取得极值,方程必须有解,

所以△,即,  此时方程的根为

,,

所以    

时,

x
(-∞,x1)
x 1
(x1,x2)
x2
(x2,+∞)
f’(x)
+
0

0
+
f (x)
增函数
极大值
减函数
极小值
增函数

所以在x 1, x2处分别取得极大值和极小值.

时,    

x
(-∞,x2)
x 2
(x2,x1)
x1
(x1,+∞)
f’(x)

0
+
0

f (x)
减函数
极小值
增函数
极大值
减函数

所以在x 1, x2处分别取得极大值和极小值.

综上,当满足时, 取得极值.    

(2)要使在区间上单调递增,需使上恒成立.

恒成立,  所以

,,

(舍去),    

时,,当,单调增函数;

,单调减函数,

所以当时,取得最大,最大值为.

所以

时,,此时在区间恒成立,所以在区间上单调递增,当最大,最大值为,所以

综上,当时, ;   当时,    

[命题立意]:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.

试题详情


同步练习册答案