8.(2008浙江温州)方程
的解是( )B
A.
B.
C.
D.![]()
7.(2008山东济南).如果
xa+2y3与-3x3y2b-1是同类项,那么a、b的值分别是( )A
A.
B.
C.
D.![]()
6.(2008湖南郴州)方程2x+1=0的解是( )B
A.
B.
C. 2
D.-2
5.(2008
湖北 十堰)把方程
去分母正确的是( ) A
A.
B.
C.
D.![]()
4.(2008 湖北 荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正
方形,已知大正方形的面积是144,小正方形的面积是4,
若用x,y表示矩形的长和宽(x>y),则下列关系式中不正
确的是( ) D
(A) x+y=12 . (B) x-y=2.
(C) xy=35. (D) x
+y
=144.
![]()
3、(2008浙江义乌)已知
、
互余,
比
大
.设
、
的度数分别为
、
,下列方程组中符合题意的是( )C
A.
B.
C.
D.![]()
2.(08浙江温州)方程
的解是( )B
A.
B.
C.
D.![]()
1.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是 ( )
A. 10x+20=100 B.10x-20=100 C. 20-10x=100 D.20x+10=100
答案:A
22. (本小题满分14分)
设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且
(O为坐标原点),并求出该圆的方程;
(3)已知
,设直线
与圆C:
(1<R<2)相切于A1,且
与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
解:(1)因为
,
,
,
所以
, 即
.
当m=0时,方程表示两直线,方程为
;
当
时, 方程表示的是圆
当
且
时,方程表示的是椭圆;
当
时,方程表示的是双曲线.
(2).当
时, 轨迹E的方程为
,设圆心在原点的圆的一条切线为
,解方程组
得
,即
,
要使切线与轨迹E恒有两个交点A,B,
则使△=
,
即
,即
,
且![]()
,
要使
, 需使
,即
,
所以
, 即
且
, 即
恒成立.
所以又因为直线
为圆心在原点的圆的一条切线,
所以圆的半径为
,
, 所求的圆为
.
当切线的斜率不存在时,切线为
,与
交于点
或
也满足
.
综上, 存在圆心在原点的圆
,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
.
(3)当
时,轨迹E的方程为
,设直线
的方程为
,因为直线
与圆C:
(1<R<2)相切于A1, 由(2)知
, 即
①,
因为
与轨迹E只有一个公共点B1,
由(2)知
得
,
即
有唯一解
则△=
, 即
,
②
由①②得
, 此时A,B重合为B1(x1,y1)点,
由
中
,所以,
,
B1(x1,y1)点在椭圆上,所以
,所以
,
在直角三角形OA1B1中,
因为
当且仅当
时取等号,所以
,即
当
时|A1B1|取得最大值,最大值为1.
[命题立意]:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.
21.(本小题满分12分)
已知函数
,其中
![]()
(1) 当
满足什么条件时,
取得极值?
(2) 已知
,且
在区间
上单调递增,试用
表示出
的取值范围.
解: (1)由已知得
,令
,得
,
要取得极值,方程
必须有解,
所以△
,即
, 此时方程
的根为
,
,
所以
![]()
当
时,
|
x |
(-∞,x1) |
x 1 |
(x1,x2) |
x2 |
(x2,+∞) |
|
f’(x) |
+ |
0 |
- |
0 |
+ |
|
f (x) |
增函数 |
极大值 |
减函数 |
极小值 |
增函数 |
所以
在x 1, x2处分别取得极大值和极小值.
当
时,
![]()
|
x |
(-∞,x2) |
x 2 |
(x2,x1) |
x1 |
(x1,+∞) |
|
f’(x) |
- |
0 |
+ |
0 |
- |
|
f (x) |
减函数 |
极小值 |
增函数 |
极大值 |
减函数 |
所以
在x 1, x2处分别取得极大值和极小值.
综上,当
满足
时,
取得极值.
![]()
(2)要使
在区间
上单调递增,需使
在
上恒成立.
即
恒成立, 所以![]()
设
,
,
令
得
或
(舍去),
![]()
当
时,
,当
时
,
单调增函数;
当
时
,
单调减函数,
所以当
时,
取得最大,最大值为
.
所以![]()
当
时,
,此时
在区间
恒成立,所以
在区间
上单调递增,当
时
最大,最大值为
,所以![]()
综上,当
时,
; 当
时,
![]()
[命题立意]:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com