2.函数![]()
的图象大致形状是
![]()
A B C D
1.复数
,则复数
在复平面内对应的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12、向量中一些常用的结论:
(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;
(2)
,特别地,当
同向或有![]()
![]()
![]()
![]()
;当
反向或有![]()
![]()
![]()
![]()
;当
不共线![]()
(这些和实数比较类似).
(3)在
中,①若
,则其重心的坐标为
。如若⊿ABC的三边的中点分别为(2,1)、(-3,4)、 (-1,-1),则⊿ABC的重心的坐标为_______(答:
);
②![]()
![]()
为
的重心,特别地
为
的重心;
③
为
的垂心;
④向量
所在直线过
的内心(是
的角平分线所在直线);
⑤![]()
的内心;
(3)若P分有向线段
所成的比为
,点
为平面内的任一点,则
,特别地
为
的中点
;
(4)向量
中三终点
共线
存在实数
使得
且
.如平面直角坐标系中,
为坐标原点,已知两点
,
,若点
满足![]()
,其中
且
,则点
的轨迹是_______(答:直线AB)
11.平移公式:如果点
按向量
平移至
,则
;曲线
按向量
平移得曲线
.注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!如(1)按向量
把
平移到
,则按向量
把点
平移到点______(答:(-8,3));(2)函数
的图象按向量
平移后,所得函数的解析式是
,则
=________(答:
)
10.线段的定比分点:
(1)定比分点的概念:设点P是直线P
P
上异于P
、P
的任意一点,若存在一个实数
,使
,则
叫做点P分有向线段
所成的比,P点叫做有向线段
的以定比为
的定比分点;
(2)
的符号与分点P的位置之间的关系:当P点在线段 P
P
上时![]()
>0;当P点在线段
P
P
的延长线上时![]()
<-1;当P点在线段P
P
的延长线上时
;若点P分有向线段
所成的比为
,则点P分有向线段
所成的比为
。如若点
分
所成的比为
,则
分
所成的比为_______(答:
)
(3)线段的定比分点公式:设
、
,
分有向线段
所成的比为
,则
,特别地,当
=1时,就得到线段P
P
的中点公式
。在使用定比分点的坐标公式时,应明确
,
、
的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比
。如(1)若M(-3,-2),N(6,-1),且
,则点P的坐标为_______(答:
);(2)已知
,直线
与线段
交于
,且
,则
等于_______(答:2或-4)
9、向量垂直的充要条件:
.特别地
。如(1)已知
,若
,则
(答:
);(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,
,则点B的坐标是________ (答:(1,3)或(3,-1));(3)已知
向量
,且
,则
的坐标是________ (答:
)
8、向量平行(共线)的充要条件:![]()
![]()
=0。如(1)若向量
,当
=_____时
与
共线且方向相同(答:2);(2)已知
,
,
,且
,则x=______(答:4);(3)设
,则k=_____时,A,B,C共线(答:-2或11)
7、向量的运算律:(1)交换律:
,
,
;(2)结合律:
,
;(3)分配律:
,
。如下列命题中:①
;②
;③ ![]()
![]()
;④ 若
,则
或
;⑤若
则
;⑥
;⑦
;⑧
;⑨
。其中正确的是______(答:①⑥⑨)
提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即
,为什么?
6、向量的运算:
(1)几何运算:
①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设
,那么向量
叫做
与
的和,即
;
②向量的减法:用“三角形法则”:设
,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①
___;②
____;③
_____(答:①
;②
;③
);(2)若正方形
的边长为1,
,则
=_____(答:
);(3)若O是
所在平面内一点,且满足
,则
的形状为____(答:直角三角形);(4)若
为
的边
的中点,
所在平面内有一点
,满足
,设
,则
的值为___(答:2);(5)若点
是
的外心,且
,则
的内角
为____(答:
);
(2)坐标运算:设
,则:
①向量的加减法运算:
,
。如(1)已知点
,
,若
,则当
=____时,点P在第一、三象限的角平分线上(答:
);(2)已知
,
,则
(答:
或
);(3)已知作用在点
的三个力
,则合力
的终点坐标是 (答:(9,1))
②实数与向量的积:
。
③若
,则
,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设
,且
,
,则C、D的坐标分别是__________(答:
);
④平面向量数量积:
。如已知向量
=(sinx,cosx),
=(sinx,sinx),
=(-1,0)。(1)若x=
,求向量
、
的夹角;(2)若x∈
,函数
的最大值为
,求
的值(答:
或
);
⑤向量的模:
。如已知
均为单位向量,它们的夹角为
,那么
=_____(答:
);
⑥两点间的距离:若
,则
。如如图,在平面斜坐标系
中,
,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若
,其中
分别为与x轴、y轴同方向的单位向量,则P点斜坐标为
。(1)若点P的斜坐标为(2,-2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系
中的方程。(答:(1)2;(2)
);
5、平面向量的数量积:
(1)两个向量的夹角:对于非零向量
,
,作
,![]()
称为向量
,
的夹角,当
=0时,
,
同向,当
=
时,
,
反向,当
=
时,
,
垂直。
(2)平面向量的数量积:如果两个非零向量
,
,它们的夹角为
,我们把数量
叫做
与
的数量积(或内积或点积),记作:![]()
![]()
,即![]()
![]()
=
。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC中,
,
,
,则
_________(答:-9);(2)已知
,
与
的夹角为
,则
等于____(答:1);(3)已知
,则
等于____(答:
);(4)已知
是两个非零向量,且
,则
的夹角为____(答:
)
(3)
在
上的投影为
,它是一个实数,但不一定大于0。如已知
,
,且
,则向量
在向量
上的投影为______(答:
)
(4)![]()
![]()
的几何意义:数量积![]()
![]()
等于
的模
与
在
上的投影的积。
(5)向量数量积的性质:设两个非零向量
,
,其夹角为
,则:
①
;
②当
,
同向时,![]()
![]()
=
,特别地,
;当
与
反向时,![]()
![]()
=-
;当
为锐角时,![]()
![]()
>0,且
不同向,
是
为锐角的必要非充分条件;当
为钝角时,![]()
![]()
<0,且
不反向,
是
为钝角的必要非充分条件;
③非零向量
,
夹角
的计算公式:
;④
。如(1)已知
,
,如果
与
的夹角为锐角,则
的取值范围是______(答:
或
且
);(2)已知
的面积为
,且
,若
,则
夹角
的取值范围是_________(答:
);(3)已知![]()
与
之间有关系式
,①用
表示
;②求
的最小值,并求此时
与
的夹角
的大小(答:①
;②最小值为
,
)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com