0  410285  410293  410299  410303  410309  410311  410315  410321  410323  410329  410335  410339  410341  410345  410351  410353  410359  410363  410365  410369  410371  410375  410377  410379  410380  410381  410383  410384  410385  410387  410389  410393  410395  410399  410401  410405  410411  410413  410419  410423  410425  410429  410435  410441  410443  410449  410453  410455  410461  410465  410471  410479  447090 

3.将新数据列中的第3个数65与右边相邻的数97进行比较,因为97>65,所以顺序不变,得到新的数据列:

{38,49,65,97,76,13,27,49}

试题详情

2.将新数据列中的第2个数49与右边相邻的数65进行比较,因为65>49,所以顺序不变,得到新的数据列:

{38,49,65,97,76,13,27,49}

试题详情

1.将第1个数与右边相邻的数38进行比较,因为38<49,49应下沉,即向右移动,所以交换他们的位置,得到新的数据列:

{38,49,65,97,76,13,27,49}

试题详情

3.排序

排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序

(1)直接插入排序

在日常生活中,经常碰到这样一类排序问题:把新的数据插入到已经排好顺序的数据列中。

例如:一组从小到大排好顺序的数据列{1,3,5,7,9,11,13},通常称之为有序列,我们用序号1,2,3,……表示数据的位置,欲把一个新的数据8插入到上述序列中。

完成这个工作要考虑两个问题:

(1)确定数据“8”在原有序列中应该占有的位置序号。数据“8”所处的位置应满足小于或等于原有序列右边所有的数据,大于其左边位置上所有的数据。

(2)将这个位置空出来,将数据“8”插进去。

对于一列无序的数据列,例如:{49,38,65,97,76,13,27,49},如何使用这种方法进行排序呢?基本思想很简单,即反复使用上述方法排序,由序列的长度不断增加,一直到完成整个无序列就有序了

首先,{49}是有序列,我们将38插入到有序列{49}中,得到两个数据的有序列:

{38,49},

然后,将第三个数据65插入到上述序列中,得到有序列:

{38,49,65}

…………

按照这种方法,直到将最后一个数据65插入到上述有序列中,得到

{13,27,38,49,49,65,76,97}

这样,就完成了整个数据列的排序工作。注意到无序列“插入排序算法”成为了解决这类问题的平台

(2)冒泡法排序

所谓冒泡法排序,形象地说,就是将一组数据按照从小到大的顺序排列时,小的数据视为质量轻的,大的数据视为质量沉的。一个小的数据就好比水中的气泡,往上移动,一个较大的数据就好比石头,往下移动。显然最终会沉到水底,最轻的会浮到顶,反复进行,直到数据列排成为有序列。以上过程反映了这种排序方法的基本思路。

我们先对一组数据进行分析。

设待排序的数据为:{49,38,65,97,76,13,27,49}

排序的具体操作步骤如下:

试题详情

2.秦九韶算法

秦九韶算法的一般规则:

秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。用秦九韶算法求一般多项式f(x)= anxn+an-1xn-1+….+a1x+a0当x=x0时的函数值,可把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求

v0=an

v1=anx+an-1

v2=v1x+an-2

v3=v2x+an-3

……..

vn=vn-1x+a0

观察秦九韶算法的数学模型,计算vk时要用到vk-1的值,若令v0=an

我们可以得到下面的递推公式:

v0=an

vk=vk1+ank(k=1,2,…n)

这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现

试题详情

1.求最大公约数

(1)短除法

求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来

(2)穷举法(也叫枚举法)

穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数

(3)辗转相除法

辗转相除法求两个数的最大公约数,其算法可以描述如下:

① 输入两个正整数m和n;

② 求余数r:计算m除以n,将所得余数存放到变量r中;

③更新被除数和余数:m=n,n=r;

④判断余数r是否为0。若余数为0,则输出结果;否则转向第②步继续循环执行

如此循环,直到得到结果为止。

(4)更相减损术

我国早期也有解决求最大公约数问题的算法,就是更相减损术。在《九章算术》中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之

步骤:

Ⅰ.任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。

Ⅱ.以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

试题详情

算法是高中数学新课程中的新增内容,本讲的重点是几种重要的算法案例思想,复习时重算法的思想轻算法和程序的构造。

预测2011年高考队本讲的考察是:以选择题或填空题的形式出现,分值在5分左右,考察的热点是算法实例和传统数学知识的结合题目

试题详情

11. 《马说》的标点符号,是现代人加的。有人提出:末句“其真不知马也。”,应该用(?)结束。请你细读原文,揣摩文意,表明你的看法,并说明理由。

提示:开放性题。可同意用句号:问而后答,一锤定音。可认为用问号:发人深思,余味无穷。

试题详情

10. 时代发展到今天,人才的发现与被发现完全出现了全新的局面,人才自身也应该从中反省自己了。如果你是某方面的人才,你将会怎样不使自己被埋没?写出你的具体做法,分条列出。

提示:开放性题。应联系实际,列出具体展示自己才能的措施或方法。

试题详情


同步练习册答案