25.(本题12分)如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C。
(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;
(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。
24.(本题10分)填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
23.(本题10分)康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台。从A、B两地运往甲、乙两地的费用如下表:
甲地(元/台)
乙地(元/台)
A地
600
500
B地
400
800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式;
(2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?
22.(本题8分)如图,等腰三角形ABC中,AC=BC=10,AB=12。以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值。
(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”。这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由。
![]()
请你根据不完整的频率分布表,解答下列问题:
(1)补全频数分布直方图;
0.36
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com