精英家教网 > 初中数学 > 题目详情

某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________ m2 .

75 【解析】试题分析:首先设垂直于墙面的长度为x,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-3+75,,则当x=5时,y有最大值,最大值为75,即饲养室的最大面积为75平方米.
练习册系列答案
相关习题

科目:初中数学 来源:河南省郑州市郑东新区实验学校2017-2018学年八年级(上)期中数学试卷 题型:单选题

在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为(  )

A. (3,4) B. (4,3) C. (﹣1,﹣2) D. (﹣2,﹣1)

A 【解析】由题意可知A(﹣4,﹣1)的对应点A′的坐标为(﹣2,2 ),即可得坐标的变化规律为各对应点之间的关系是横坐标加2,纵坐标加3,由此可得点B′的横坐标为1+2=3,纵坐标为1+3=4,所以点B′的坐标为(3,4).故选A.

查看答案和解析>>

科目:初中数学 来源:数学人教版八年级上册第11章第二节与三角形有关的角第三课时同步练习 题型:解答题

如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.

66.5° 【解析】试题分析:根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数. 试题解析: ∵三角形的外角∠DAC和∠ACF的平分线交于点E, ∴∠EAC=∠DAC,∠ECA=∠ACF; 又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内...

查看答案和解析>>

科目:初中数学 来源:数学人教版八年级上册第11章第二节与三角形有关的角第三课时同步练习 题型:单选题

如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确(  )

A. ∠2=∠4+∠7 B. ∠3=∠1+∠6 C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°

C 【解析】 A项,根据三角形外角的性质可知,∠2=∠4+∠6,因为L3和L4不平行,所以∠6≠∠7,所以∠2≠∠4+∠7,故A项错误; B项,根据三角形外角的性质可知,∠3=∠AOB+∠OAB,根据对顶角相等可知,∠1=∠AOB,∠7=∠OAB,所以∠3=∠1+∠7,因为L3和L4不平行,所以∠7≠∠6,所以∠3≠∠1+∠6,故B项错误; C项,根据三角形内角和定理可知,...

查看答案和解析>>

科目:初中数学 来源:山东省临朐县沂山风景区2018届九年级上期末模拟数学试卷 题型:解答题

如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件PQMN,使正方形PQMN的边QM在BC上,其余两个项点P,N分别在AB,AC上.求这个正方形零件PQMN面积S.

正方形零件PQMN面积是2304mm2. 【解析】试题分析:PN与AD交于点E,如图,设MN=xmm,则AE=AD﹣ED=80﹣x,再证明△APN∽△ABC,利用相似比可表示出PN=(80﹣x),根据正方形的性质得到(80﹣x)=x,然后结合正方形的面积公式进行解答即可. 试题解析:PN与AD交于点E,如图,设MN=xmm, 易得四边形MNED为矩形,则ED=MN=x, ∴...

查看答案和解析>>

科目:初中数学 来源:山东省临朐县沂山风景区2018届九年级上期末模拟数学试卷 题型:填空题

如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=________

【解析】试题分析:可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可. 【解析】 ∵AB=1, 设AD=x,则FD=x﹣1,FE=1, ∵四边形EFDC与矩形ABCD相似, ∴=,=, 解得x1=,x2=(不合题意舍去), 经检验x1=是原方程的解. 故答案为.

查看答案和解析>>

科目:初中数学 来源:山东省临朐县沂山风景区2018届九年级上期末模拟数学试卷 题型:单选题

抛物线y=x2-bx+8的顶点在x轴上,取b的值一定为(   )

A. 4 B. -4 C. 2或-2 D.

D 【解析】∵抛物线y=x2-bx+8的顶点在x轴上, ∴△=(-b)2-4×8=b2-32=0,解得b= , 故选D.

查看答案和解析>>

科目:初中数学 来源:浙江省宁波市东钱湖九校2018届九年级上册期中联考数学试卷 题型:解答题

如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2.其中正确结论的个数是(   )

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】【解析】 ∵抛物线与交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确; ∵E是抛物线的顶点,∴AE=EC,∴无法得出AC=AE,故②错误; 当y=3时,3=,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确; ∵=时,解得:x1=1,x2=37...

查看答案和解析>>

科目:初中数学 来源:2017年安徽省中考数学三模试卷 题型:填空题

人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有 种不同方法

55

查看答案和解析>>

同步练习册答案