科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
(1)计算:tan60°﹣(a2+1)0+|
|﹣
;
(2)计算:
.
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
(1)解方程:x2+3x=10;
(2)解不等式组
.
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
(1)答案见解析;(2);(3)传到乙脚下的概率大. 【解析】试题分析:(1)根据题意画出树状图,得出所有的可能情况;(2)根据树状图得出传到甲脚下的概率;(3)根据树状图得出传到乙脚下的概率,然后进行比较大小,得出答案. 试题解析:(1)三次传球所有可能的情况如图: (2)由图知:三次传球后,球回到甲的概率为P(甲)= (3)由图知:三次传球后,球回到乙的概率为P(乙)=...查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:
(1)此次抽样调查的样本容量是
(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?
![]()
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
如图,□ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE≌△DOF;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并说明理由.
![]()
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数.
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
(1)原计划每天生产零件2400个,规定的天数是10天;(2)原计划安排的工人人数为480人. 【解析】试题分析:(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个...查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3
千米.(注:结果有根号的保留根号)
(1)求A,B两观测站之间的距离;
(2)小船从点P处沿射线AP的方向以
千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.
![]()
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
![]()
(1)写出商场销售这种工具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.
(1)w=-10x2+700x-10000; (2)销售单价为35元时,每天销售利润最大,最大利润为2250元; (3)方案A的最大利润更高,理由见解析. 【解析】试题分析:(1)根据利润=(销售单价-进价)×销售量,列出函数关系式即可; (2)根据(1)式列出的函数关系式,运用配方法求最大值; (3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润...查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”,设BC=a,AC﹣b,AB=c.
【特例探索】
(1)如图1,当∠ABE=45°,c=2
时,a= ,b= ;如图2,当∠ABE=30°,c=4时,a= ,b= ;
【归纳证明】
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;
【拓展应用】
(3)如图4,在?ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=2
,AB=3.求AF的长.
![]()
查看答案和解析>>
科目: 来源:2017年江苏省徐州市中考数学模拟试卷(2) 题型:解答题
(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
![]()
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
(1);(2)12;(3)t=或t=或t=14. 【解析】试题分析:(1)首先利用根与系数的关系得出: ,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解. 试题解析:【解析】 (1)由题意知x1、x2是...查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com