科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图所示,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)①当AM为何值时,四边形AMDN是矩形?
②当AM为何值时,四边形AMDN是菱形?
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
![]()
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图,已知O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动.
(1)当△ODP是等腰三角形时,请直接写出点P的坐标;
(2)求△ODP周长的最小值.(要有适当的图形和说明过程)
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:△AEF≌△BEC;
(2)判断四边形BCFD是何特殊四边形,并说出理由;
(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;
②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系 时,仍有EF=BE+DF;
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2
,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图,在矩形ABCD中,AB=2,AD=
.
(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;
(2)若P为BC边上一点,且BP=2CP,连结EP并延长交AB的延长线于F.
①求证:AB=BF;
②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并写出旋转度数;若不能,请说明理由.
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的九分之一?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
(本小题12分)如图1,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图2,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)连接DE,当t为何值时,△DEF为直角三角形?
(4)如图3,连接DE,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
![]()
查看答案和解析>>
科目: 来源:2018年人教版九年级数学中考专题复习 四边形 解答题 题型:解答题
如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.
(1)证明:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积;
(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com