分析 (1)根据角平分线的定义可以求得∠MON=$\frac{1}{2}$(∠AOB+∠COD);
(2)根据图示可以求得:∠BOD=∠BOC+∠COD=40°.然后结合角平分线的定义推知∠CON=$\frac{1}{2}$∠BOD,∠COM=$\frac{1}{2}$∠AOC,即可得到结论;
(3)根据(1)、(2)的解题思路即可得到结论.
解答 解:(1)∵∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的角平分线,
∴∠BON=$\frac{1}{2}$∠COD=15°,∠MOB=$\frac{1}{2}$∠AOB=22.5°,
∴∠MON=37.5°.
故答案为:37.5°;
(2)当绕着点O逆时针旋转∠COD,∠BOC=10°时,∠AOC=55°,∠BOD=40°,
∴∠BON=$\frac{1}{2}$∠BOD=20°,∠MOB=$\frac{1}{2}$∠AOC=22.5°,
∴∠MON=37.5°;
(3)∵∠AOC=∠AOB+∠BOC,∠BOD=∠COD+∠BOC,
∵OM,ON分别是∠AOC,∠BOD的角平分线,∠AOB=45°,∠COD=30°,
∴∠MOC=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(∠AOB+∠BOC),∠CON=$\frac{1}{2}∠$BOD-∠BOC,
∴∠MON=$\frac{1}{2}$(∠AOB+∠BOC)+$\frac{1}{2}∠$BOD-∠BOC=$\frac{1}{2}∠AOB$+$\frac{1}{2}$(∠BOD-∠BOC)=$\frac{1}{2}∠AOB+\frac{1}{2}∠COD$=37.5°,$\frac{1}{2}$α+$\frac{1}{2}$β=$\frac{1}{2}$(α+β);
当∠COD在OA、OB的反向延长线形成的角的内部时,
同理,∠MON=142.5°,
综上所述:∠MON=37.5°或142.5°,
故答案是:37.5或142.5.
点评 此题主要考查了角的计算,正确根据角平分线的性质得出是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com