18£®Èçͼ£¨1£©£¬½«Ò»¿é³¤·½ÐÎÖ½°å°Ú·ÅÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ê¹³¤·½ÐÎÖ½°æµÄÒ»¸öÖ±½Ç¶¥µãBÓë×ø±êÔ­µãÖØºÏ£¬Á½Ìõ±ßÓë×ø±êÖáÖØºÏ£¬ÒÑÖªBC=4£¬AB=3£®
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©½«³¤·½ÐÎÖ½°åµÄÒ»¸öÖ±½ÇÑØAEÕÛµþ£¬Ê¹BµãÇ¡ºÃÂäÔÚÏß¶ÎACÉϵÄB¡ä´¦£¬ÕÛºÛAE½»BC±ßÓÚµãE£¨Í¼£¨2£©£©£¬ÇóµãE×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±ÏßACÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃS¡÷ADP=2S¡÷ABE£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë¼òҪ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£ºC£¨4£¬0£©¡¢A£¨0£¬3£©£®ÉèACµÄ½âÎöʽΪy=kx+b£¬½«µãA¡¢CµÄ×ø±ê´úÈëµÃµ½¹ØÓÚk¡¢bµÄ¶þÔªÒ»´Î·½³Ì×飬´Ó¶ø¿ÉÇóµÃk¡¢bµÄÖµ£¬ÓÚÊǿɵõ½Ö±ÏßACµÄ½âÎöʽΪy=-$\frac{3}{4}$x+3£»
£¨2£©ÔÚRt¡÷ABCÖУ¬Óɹ´¹É¶¨Àí¿ÉÇóµÃAC=5£¬ÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£º¡ÏEB¡äC=90¡ã£¬BE=BE¡ä£¬B¡äC=2£¬ÉèBE=B¡äE=x£¬È»ºóÔÚRt¡÷B¡äECÖУ¬Óɹ´¹É¶¨ÀíÁгö¹ØÓÚ¹ØÓÚxµÄ·½³Ì£¬´Ó¶ø¿ÉÇóµÃBE=$\frac{3}{2}$£»
£¨3£©¢ÙÈçͼ£¨1£©Ëùʾ£º¹ýµãP×÷PF¡ÍAD£¬´¹×ãΪF£®ÓÉS¡÷ADP=2S¡÷ABE£¬¿ÉÇóµÃPF=$\frac{9}{4}$£¬´Ó¶øµÃµ½µãPµÄ×Ý×ø±êPy=4-$\frac{9}{4}$=$\frac{7}{4}$£¬½«y=$\frac{7}{4}$´úÈëy=-$\frac{3}{4}$x+3¿ÉÇóµÃx=$\frac{5}{3}$£¬´Ó¶øµÃµ½µãPµÄ×ø±êΪ£¨$\frac{5}{3}$£¬$\frac{7}{4}$£©£»
¢ÚÈçͼ£¨2£©Ëùʾ£º¹ýµãP×÷PF¡ÍAD£¬´¹×ãΪF£®ÓÉ¢Ù¿ÉÖª£ºPF=$\frac{9}{4}$£®¿ÉÇóµÃµãPµÄ×Ý×ø±êPy=$\frac{25}{4}$£®½«y=$\frac{25}{4}$´úÈëy=-$\frac{3}{4}$x+3¿ÉÇóµÃx=-$\frac{13}{3}$£¬ÓÚÊǵõ½µãPµÄ×ø±êΪ£¨-$\frac{13}{3}$£¬$\frac{25}{4}$£©£®

½â´ð ½â£º£¨1£©¡ßBC=4£¬AB=3£¬
¡àC£¨4£¬0£©¡¢A£¨0£¬3£©£®
ÉèACµÄ½âÎöʽΪy=kx+b£¬½«µãA¡¢CµÄ×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{4k+b=0}\\{b=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=3}\end{array}\right.$£®
ÔòÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{3}{4}$x+3£®
£¨2£©ÔÚRt¡÷ABCÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºAC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5£®
¡ßÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£ºBE=B¡äE£¬AB=AB¡ä=3£¬¡ÏB=¡ÏAB¡äE=90¡ã
¡àB¡äC=5-3=2£¬¡ÏEB¡äC=90¡ã£®
ÉèBE=B¡äE=x£¬ÔòEC=4-x£®
ÔÚRt¡÷B¡äECÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºEC2=EB¡ä2+B¡äC2£¬¼´£¨4-x£©2=x2+22£®
½âµÃ£ºx=$\frac{3}{2}$£®
¡àBE=$\frac{3}{2}$£®
¡àµãEµÄ×ø±êΪ£¨$\frac{3}{2}$£¬0£©£®
£¨3£©¢ÙÈçͼ£¨1£©Ëùʾ£º¹ýµãP×÷PF¡ÍAD£¬´¹×ãΪF£®

${S}_{¡÷ABE}=\frac{1}{2}AB•BE$=$\frac{1}{2}¡Á3¡Á\frac{3}{2}$=$\frac{9}{4}$£®
¡ßS¡÷ADP=2S¡÷ABE£¬
¡àS¡÷ADP=2¡Á$\frac{9}{4}$=$\frac{9}{2}$£®
¡à$\frac{1}{2}¡ÁAD•PF=\frac{9}{2}$£¬¼´$\frac{1}{2}¡Á4¡ÁPF=\frac{9}{2}$£®
½âµÃ£ºPF=$\frac{9}{4}$£®
¡àµãPµÄ×Ý×ø±êPy=4-$\frac{9}{4}$=$\frac{7}{4}$£®
½«y=$\frac{7}{4}$´úÈëy=-$\frac{3}{4}$x+3µÃ£º$-\frac{3}{4}x+3=\frac{7}{4}$£®
½âµÃ£ºx=$\frac{5}{3}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{5}{3}$£¬$\frac{7}{4}$£©£®
¢ÚÈçͼ£¨2£©Ëùʾ£º¹ýµãP×÷PF¡ÍAD£¬´¹×ãΪF£®

¡ßÓÉ¢Ù¿ÉÖª£ºPF=$\frac{9}{4}$£®
¡àµãPµÄ×Ý×ø±êPy=$\frac{9}{4}+4$=$\frac{25}{4}$£®
½«y=$\frac{25}{4}$´úÈëy=-$\frac{3}{4}$x+3µÃ£º-$\frac{3}{4}$x+3=$\frac{25}{4}$£®
½âµÃ£ºx=-$\frac{13}{3}$£®
¡àµãPµÄ×ø±êΪ£¨-$\frac{13}{3}$£¬$\frac{25}{4}$£©£®
×ÛÉÏËùÊö£¬µãPµÄ×ø±êΪ£¨$\frac{5}{3}$£¬$\frac{7}{4}$£©»ò£¨-$\frac{13}{3}$£¬$\frac{25}{4}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇÒ»´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ¡¢¹´¹É¶¨Àí¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½¡¢Ò»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØµã£¬¸ù¾ÝµãPÔÚÏß¶ÎACÉÏ¡¢ÔÚPÔÚÏß¶ÎACÍâ·ÖÀà»­³öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÃÀ»¯Ð£Ô°µÄ»î¶¯ÖУ¬Ä³ÐËȤС×éÏë½èÖúÈçͼ6ËùʾµÄÖ±½Çǽ½Ç£¨CD±ßËùÔÚµÄǽ³¤10Ã×£¬DA±ßËùÔÚµÄǽ×ã¹»³¤£©£¬ÓÃ28Ã׳¤µÄÀé°ÊΧ³ÉÒ»¸ö¾ØÐλ¨Ô°ABCD£¨Àé°ÊֻΧAB£¬BCÁ½±ß£©£¬ÉèAB=xÃ×£®
£¨1£©ÈôΧ³É»¨Ô°µÄÃæ»ýΪ160ƽ·½Ã×£¬ÇóxµÄÖµ£»
£¨2£©ÄÜ·ñΧ³É»¨Ô°µÄÃæ»ýΪ300ƽ·½Ã×£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼËùʾ£¬Ò»ÕŵÈÑüÈý½ÇÐÎֽƬ£¬µ×±ß³¤18cm£¬µ×±ßÉϵĸ߳¤18cm£¬ÏÖÑØµ×±ßÒÀ´ÎÏòÏÂÍùÉϲüô¿í¶È¾ùΪ3cmµÄ¾ØÐÎÖ½Ìõ£¬ÒÑÖª¼ôµÃµÄÖ½ÌõÖÐÓÐÒ»ÕÅÊÇÕý·½ÐΣ¬ÔòÕâÕÅÕý·½ÐÎÖ½ÌõÊÇ£¨¡¡¡¡£©
A£®µÚ4ÕÅB£®µÚ5ÕÅC£®µÚ6ÕÅD£®µÚ7ÕÅ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬Èç¹ûAC=4£¬sinB=$\frac{2}{3}$£¬ÄÇôAB=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬BC=3£¬AC=4£¬µãDÊÇAB±ßÉÏÒ»µã£¬½«¡÷ABCÑØ×ÅÖ±ÏßCD·­ÕÛ£¬µãAÂäÔÚÖ±ÏßABÉϵĵãA¡ä´¦£¬Ôòsin¡ÏA¡äCD=$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÒ»´Î´ÙÏú»î¶¯ÖУ¬¼×É̵ê°ÑÒ»ÖÖÔ­¼ÛΪ10ÔªÒ»´üµÄÏ´Ò·۴òÆßÕÛ³öÊÛ£»ÒÒÉ̵êÏúÊÛÍ¬Ò»Æ·ÅÆÏ´Ò·Û10ÔªÒ»´ü£¬ÂòÒ»´üºóÔùËÍÒ»ÕÅÓŻݿ¨£¬Æ¾ÓŻݿ¨ÔÙÂòͬÖÖÏ´Ò·۴òÁùÕÛ£¬ÄÇôÕâÁ½¼ÒÉ̵깺Âò¶àÉÙ´üÊýÁ¿ÏàͬµÄÏ´Ò·ۣ¬¿Éʹ»¨µÄÇ®Ïàͬ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÃËÄÉáÎåÈë·¨½«0.962¾«È·µ½°Ù·ÖλµÄ½üËÆÊýÊÇ0.96£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³Ð©É̼ÒΪÁË´ÙÏú£¬ÍùÍù°ÑijÉÌÆ·ÏÈÕǼۣ¬ÔÙ´òÕÛ³öÊÛ£¬Ä³ÖÖʱװÏÖÔÚÊÛ¼ÛΪaÔª£¬É̼ÒÏȰÑÊÛ¼ÛÉÏÕÇ2³Éºó£¬ÓÖ´òÎåÕÛ£¬ÕâʱÁãÊÛ¼ÛΪ60Ôª£¬¼´Ê¹ÕâÑùÉ̼Òÿ¼þÈÔÓÐ20%µÄÀûÈó£®
Ç󣺣¨1£©ÕâÖÖʱװµÄ³É±¾Îª¶àÉÙ£¿
£¨2£©´òÎåÕÛǰµÄÊÛ¼ÛΪ¶àÉÙ£¿ÕâʱµÄÀûÈóÂÊΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¼ÆË㣺-$\frac{n^4}{m}¡Â\frac{n^2}{m^2}•\frac{m^2}{n^2}$=-m3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸