分析 (1)利用旋转的性质结合直角三角形的性质得出△CBB′是等边三角形,进而得出答案;
(2)利用锐角三角函数关系得出sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,即可得出∠CAD=30°,进而得出α的度数.
解答 解:(1)将△ABC绕点C逆时针旋转得到△A′B′C,旋转角为α,
∴CB=CB′
∵点B′可以恰好落在AB的中点处,
∴点B′是AB的中点.
∵∠ACB=90°,
∴CB′=$\frac{1}{2}$AB=BB′,
∴CB=CB′=BB′,
即△CBB′是等边三角形.
∴∠B=60°.
∵∠ACB=90°,
∴∠A=30°;![]()
(2)如图,过点C作CD⊥AA′于点D,
点C到AA′的距离等于AC的一半,即CD=$\frac{1}{2}$AC.
在Rt△ADC中,∠ADC=90°,sin∠CAD=$\frac{CD}{AC}$=$\frac{1}{2}$,
∴∠CAD=30°,
∵CA=CA′,
∴∠A′=∠CAD=30°.
∴∠ACA′=120°,即α=120°.
点评 此题主要考查了旋转的性质以及等边三角形的判定等知识,正确掌握直角三角形的性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x | … | -1 | 0 | 1 | 2 | 3 | … |
| y | … | 0 | -3 | -4 | -3 | 0 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 28 | B. | 36 | C. | 45 | D. | 55 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com