| A. | 64 | B. | 65 | C. | 66 | D. | 67 |
分析 观察图形可知,第1个图形共有空心圆的个数为1×1+1;第2个图形共有空心圆的个数为2×2+1;第3个图形共有空心圆的个数为3×3+1;…;则第n个图形共有实心圆的个数为n2+1,进而得出答案.
解答 解:第1个图形共有空心圆的个数为1×1+1;
第2个图形共有空心圆的个数为2×2+1;
第3个图形共有空心圆的个数为3×3+1;
…;
则第n个图形共有实心圆的个数为n2+1,
故图⑧中圆点的个数是:82+1=65.
故选:B.
点评 此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com