分析 (1)根据图象可知,当t=$\frac{6}{5}$时,点M落在AB边上,根据△BPM∽△BCA,得到比例式,计算求出a,根据点D为AB中点,DQ∥BC,求出m;
(2)分0<t≤$\frac{6}{5}$、$\frac{3}{2}$<t<2、2<t<3三种情况,根据相似三角形的性质解答即可.
解答 解(1)由图象得:当t=$\frac{6}{5}$时,点M落在AB边上,如图3所示,
CP=$\frac{6}{5}$×2a=$\frac{12}{5}$a,CQ=$\frac{6}{5}$a,
∵△BPM∽△BCA,
∴$\frac{PM}{CA}$=$\frac{BP}{BC}$,即$\frac{\frac{6}{5}a}{3}$=$\frac{4-\frac{12}{5}a}{4}$,
解得:a=1,
根据题意得,当QM过点D时,t=m,如图4所示,
∵点D为AB中点,DQ∥BC,![]()
∴点Q为AC中点
∴t=$\frac{3}{2}$,
∴m=$\frac{3}{2}$;
(2)当0<t≤$\frac{6}{5}$时,如图5,CD与QM的交点是点G,
∵△CQG∽△ACB,
∴$\frac{CQ}{AC}$=$\frac{QG}{CB}$,即$\frac{t}{3}$=$\frac{QG}{4}$,
整理得:QG=$\frac{4}{3}$t,
∴S△CQG=$\frac{1}{2}$•t•$\frac{4}{3}$t=$\frac{2}{3}$t2,
∴y=2t2-$\frac{2}{3}$t2=$\frac{4}{3}$t2,![]()
当$\frac{3}{2}$<t<2时,如图5,PM与BD交点是H,
∴△BHP∽△BAC,
∴$\frac{BP}{BC}$=$\frac{HP}{AC}$,即$\frac{BP}{4}$=$\frac{HP}{3}$,
∴HP=$\frac{3}{4}$BP,
∴y=S△BCD-S△BHP=3-$\frac{1}{2}$BP•$\frac{3}{4}$BP=3-$\frac{3}{8}$BP2=3-$\frac{3}{8}$(4-2t)2=-$\frac{3}{2}$t2+6t-3;
当2<t<3时,同理得到y=3-$\frac{3}{8}$(2t-4)2=-$\frac{3}{2}$t2+6t-3.
点评 本题考查的是动点问题的函数图象、相似三角形的判定和性质,正确读懂函数图象、正确运用相似三角形的判定定理和性质定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | O→D→C→B | B. | A→B→C | C. | D→O→C→B | D. | B→C→O→A |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com