精英家教网 > 初中数学 > 题目详情
9.如图,四边形ABCD中,AB∥CD,点E是边AD上的点,BE平分∠ABC,CE平分∠BCD,有下列结论:①AD=AB+CD,②E为AD的中点,③BC=AB+CD,④BE⊥CE,其中正确的有②③④.(填序号)

分析 根据两直线平行,同旁内角互补可得∠ABC+∠DCB=180°,又BE、CE都是角平分线,可以推出∠EBC+∠ECB=90°,从而得到∠BEC=90°,然后延长BE交CD的延长线于点F,先证明△BCE≌△FFE(ASA),得到BC=FC,BE=FE,然后证明△ABE≌△FDE(ASA),从而可以证明②③正确,AD与BC不一定相等,所以①不正确.

解答 解:∵AB∥CD,
∴∠ABC+∠DCB=180°,
∵BE平分∠ABC,CE平分∠BCD,
∴∠EBC=$\frac{1}{2}$∠ABC,∠ECB=$\frac{1}{2}$∠BCD,
∴∠EBC+∠ECB=$\frac{1}{2}$(∠ABC+∠BCD)=90°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-90°=90°,
∴BE⊥CE
故④正确;
如图,延长BE交CD延长线于F,

∵∠BEC=90°,
∴CE⊥BF,
∵CE平分∠BCD,
∴∠BCE=∠FCE,
在△BCE与△FCE中,
$\left\{\begin{array}{l}{∠BCE=∠FCE}\\{EC=EC}\\{∠BEC=∠FEC=90°}\end{array}\right.$,
∴△BCE≌△FFE(ASA),
∴BC=FC,BE=FE,
∵AB∥CD,
∴∠ABE=∠F,
在△ABE与△FDE中,
$\left\{\begin{array}{l}{∠ABE=∠F}\\{BE=FE}\\{∠AEB=∠FED}\end{array}\right.$,
∴△ABE≌△FDE(ASA),
∴AB=DF,
∴BC=CF=CD+DF=CD+AB,故③正确;
∵△ABE≌△FDE,
∴AE=DE,即点E为AD的中点,故②正确;
∵AD≠BC,
∴AD≠CD+AB,故①错误;
故答案为:②③④.

点评 本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE⊥CE并作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.阅读材料:已知分式$\frac{3n+8}{n+1}$,化简后结果是整数,符合一切整数的n有哪些?
解:∵$\frac{3n+8}{n+1}$=$\frac{3n+3+5}{n+1}$=3+$\frac{5}{n+1}$.
∴只要求出$\frac{5}{n+1}$是整数,则n+1是5的约数,即n+1=5,n+1=1,n+1=-5,n+1=1.
∴n1=4,n2=0,n3=-6,n4=2.
(1)已知分式$\frac{2n+9}{n+1}$,化简后结果是整数,符合要求的整数n有哪些?
(2)已知分式$\frac{3{n}^{2}+7n+7}{n+2}$,化简后结果是整数,符合要求的整数n有哪些?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.作图:在图中,过点P作垂线PC⊥OA,PD⊥OB,垂足分别为点C,D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.计算$\sqrt{6{x}^{3}}÷2\sqrt{\frac{x}{3}}$的结果是(  )
A.2$\sqrt{2}$xB.xC.6$\sqrt{2}$xD.$\frac{2\sqrt{2}}{3}$x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.

(1)抛物线y=$\frac{1}{2}$x2对应的碟宽为4;抛物线y=4x2对应的碟宽为$\frac{1}{2}$;抛物线y=ax2(a>0)对应的碟宽为$\frac{2}{a}$;抛物线y=a(x-2)2+3(a>0)对应的碟宽$\frac{2}{a}$;
(2)若抛物线y=ax2-4ax-$\frac{5}{3}$(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线yn=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3,…),定义F1,F2,…..Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn-1的相似比为$\frac{1}{2}$,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn.则hn=$\frac{3}{2n-1}$,Fn的碟宽右端点横坐标为2+$\frac{3}{2n-1}$;F1,F2,….Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,点D为AB中点,连结CD,动点P、Q从点C同时出发,点P沿BC边C→B→C以 2a cm/s的速度运动;点Q沿CA边C→A以 a cm/s的速度运动,当点Q到达点A时,两点停止运动,以CQ,CP为边作矩形CQMP,当矩形CQMP与△CDB重叠部分的图形是四边形使,设重叠部分图形的面积为y(cm2).P、Q两点运动时间为t(s),在点P由C→B过程中,y与t的图象如图2所示.

(1)求a、m的值;
(2)求y与t的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在正方形ABCD中,点E是对角线AC的中点,点F在边CD上,连接DE、AF,点G在线段AF上

(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接EG,求EG的长;
(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接FH,求证:∠CFH=∠AFD;
(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生改变?若不改变,求出∠EGH的度数;若发生改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,已知△ABC中AB=6,AC=4,AD为角平分线,DE⊥AB,DE=2,则△ABC的面积为(  )
A.6B.8C.10D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?

查看答案和解析>>

同步练习册答案