精英家教网 > 初中数学 > 题目详情
4.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点称为一次变换.已知点A的坐标为(-1,0),把点A经过连续2013次这样的变换得到的点A2013的坐标是(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$).

分析 分别求得第一、二、三…八次变换后的坐标,得到每8次循环一次.则2013÷8=251…5即可求得结果.

解答 解:由题意第一次旋转后的坐标为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
第二次旋转后的坐标为(0,-1),
第三次旋转后的坐标为(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
第四次旋转后的坐标为(1,0),
第五次旋转后的坐标为(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),
第六次旋转后的坐标为(0,1),
第七次旋转后的坐标为($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),
第八次旋转后的坐标为(-1,0)
因为2013÷8=251…5,
所以把点A经过连续2013次这样的变换得到的点A2013的坐标是(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$).
故答案是:(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$).

点评 本题考查了坐标与图形变化-旋转.解答此类找规律的问题的关键是仔细分析题中所给的特征得到规律,再把这个规律应用于解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.小明建立了如图的直角坐标系,则点“A“坐标是(  )
A.(1,-1)B.(-1,1)C.(-1,2)D.(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图所示,将正方体沿面AB1C切下,则切下的小几何体为三棱锥.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于C点,且A(-2,0)、B(4,0),其原点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出原点D的坐标;
(2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取值最大值时,过点P作x轴的垂线,垂足为F,连接EF,△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.化简:y($\frac{x\sqrt{x}+x\sqrt{y}}{xy-{y}^{2}}$-$\frac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:1-$\frac{1}{x-1}$=$\frac{2x}{1-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.一个扇形的弧长是20cm,半径为5cm,则这个扇形的面积是50cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,一艘货船以每小时48海里的速度从港口B出发,沿正北方向航行.在港口B处时,测得灯塔A处在B处的北偏西37°方向上,航行至C处,测得A处在C处的北偏西53°方向上,且A、C之间的距离是45海里.在货船航行的过程中,求货船与灯塔A之间的最短距离及B、C之间的距离;若货船从港口B出发2小时后到达D,求A、D之间的距离.
(参考数据:sin53°≈$\frac{4}{5}$,cos53°≈$\frac{3}{5}$,tan53°≈$\frac{4}{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);
(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为$\frac{5}{4}$,求a的值;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案