【题目】下图是古希腊数学家阿基米德用平衡法求球的体积所用的图形.此图由正方形
、半径为
的圆及等腰直角三角形构成,其中圆内切于正方形,等腰三角形的直角顶点与
的中点
重合,斜边在直线
上.已知
为
的中点,现将该图形绕直线
旋转一周,则阴影部分旋转后形成的几何体积为( )
![]()
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N
.
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,当△AMB面积取得最大值时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取
户居民进行调查,得到如下的
列联表.
分类意识强 | 分类意识弱 | 合计 | |
试点后 |
| ||
试点前 |
| ||
合计 |
|
已知在抽取的
户居民中随机抽取
户,抽到分类意识强的概率为
.
(1)请将上面的
列联表补充完整;
(2)判断是否有
的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;
参考公式:
,其中
.
下面的临界值表仅供参考
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某集团公司计划从甲分公司中的3位员工
、
、
和乙分公司中的3位员工
、
、
选择2位员工去国外工作.
(1)若从这6名员工中任选2名,求这2名员工都是甲分公司的概率;
(2)若从甲分公司和乙分公司中各任选1名员工,求这2名员工包括
但不包括
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,抛物线
,点
,设直线
与
交于不同的两点
、
.
(1)若直线
轴,求直线
的斜率的取值范围;
(2)若直线
不垂直于
轴,且
,证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在三棱锥
中,
面
,
是直角三角形,
,
,
,点
、
、
分别为
、
、
的中点.
![]()
(1)求证:
;
(2)求直线
与平面
所成的角的正弦值;
(3)求二面角
的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
①命题“2是素数且5是素数”是真命题
②命题“若x=y,则sinx=siny”的逆命题是真命题
③命题“x0∈R,x02﹣x0﹣2>0”的否定是“x∈R,x2﹣x﹣2≤0”
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
.
(1)若圆
与
轴相切,求圆
的方程;
(2)已知
,圆
与
轴相交于两点
(点
在点
的左侧).过点
任作一条与
轴不重合的直线与圆
相交于两点
.问:是否存在实数
,使得
?若存在,求出实数
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量×(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度(微克/立方米) | 60 | 70 | 74 | 78 | 79 |
(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程
;
(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?
参考公式:由最小二乘法所得回归直线的方程是:
,其中
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com