【题目】在直角坐标系xOy中,直线l过点
且倾斜角为
.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为
,l与C交于M,N两点.
(1)求C的直角坐标方程和
的取值范围;
(2)求MN中点H的轨迹的参数方程.
【答案】(1)
;
或
(2)
(
为参数,且
或
).
【解析】
(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用直线的垂直的充要条件的应用求出结果.
解:(1)C的直角坐标方程为
,
即
,是以原点为圆心的单位圆
当
时,显然直线l与曲线C相离,不合题意.
∴
,所以直线l的斜率
存在.
∴直线l的方程可写为![]()
∵直线l与曲线C交于M,N两点,
∴圆心O到直线l的距离
,
解得![]()
∴
或
.
(2)(法一)直线l的参数方程为![]()
(t为参数,
或
)
设M,N,H对应的参数分别为
,
,
,则
,
将直线l的参数方程代入曲线C的直角坐标方程得:
![]()
∴
,∴
,
又点H的坐标满足
,
(t为参数,
或
)
∴点H的轨迹的参数方程为![]()
即
(
为参数,
或
)
(法二)
设点
,则由
可知,
当
时有![]()
即
,整理得![]()
当
时,点H与原点重合,也满足上式.
∴点H的轨迹的参数方程为![]()
(
为参数,且
或
).
科目:高中数学 来源: 题型:
【题目】已知点
为抛物线
的焦点,点
在抛物线
上,过点
的直线交抛物线
于
两点,线段
的中点为
,且满足
.
![]()
(1)若直线
的斜率为1,求点
的坐标;
(2)若
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程
,点
在直线
上,直线
与曲线
交于
两点.
(1)求曲线
的普通方程及直线
的参数方程;
(2)求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边
的边长为3,点
,
分别是边
,
上的点,且
,
.如图2,将
沿
折起到
的位置.
![]()
(1)求证:平面
平面
;
(2)给出三个条件:①
;②二面角
大小为
;③
.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段
上是否存在一点
,使直线
与平面
所成角的正弦值为
,若存在,求出
的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x﹣1|.
(1)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;
(2)在(1)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com