【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2
,△ABC的面积为2
,求b+c.
【答案】(Ⅰ)
;(Ⅱ)6.
【解析】
试题(Ⅰ) 对于2cos(B-C)+1=4cosBcosC通过三角恒等变换,再结合角的范围即可得;(Ⅱ)利用余弦定理、面积公式可求.
试题解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得
2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,
∴cos(B+C)=
. ∵0<B+C<π,∴B+C=
.
∵A+B+C=π, ∴A=
. 6分
(Ⅱ)由(Ⅰ),得A=
.
由S△ABC=2
,得
bcsin
=2
,∴bc=8. ①
由余弦定理a2=b2+c2-2bccosA,得
(2
)2=b2+c2-2bccos
,即b2+c2+bc=28,
∴(b+c)2-bc=28. ②
将①代入②,得(b+c)2-8=28,
∴b+c=6. 12分
科目:高中数学 来源: 题型:
【题目】假设有一套住房的房价从2002年的20万元上涨到2012年的40万元,下表给出了两种价格增长方式,其中
是按直线上升的房价,
是按指数增长的房价,t是2002年以来经过的年数.
t | 0 | 5 | 10 | 15 | 20 |
| 20 | 30 | 40 | 50 | 60 |
| 20 |
| 40 |
| 80 |
(1)求函数
的解析式;
(2)求函数
的解析式;
(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
:
(
为参数)和曲线
:
(
为参数).
(1)化
,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点
对应的参数为
,
为
上的动点,求
中点
到直线
:
(
为参数)距离的最小值及此时
点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题不正确的是________.
①若等比数列
的公比
,则数列
单调递增.
②常数列既是等差数列又是等比数列.
③在
中,角ABC所对的边分别为a,b,c,若
则
且
.
④在
中,若
,则
为锐角三角形.
⑤等比数列
的前n项和为
,对任意正整数m,则
,
,
,…仍成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业2017年招聘员工,其中
五种岗位的应聘人数、录用人数和录用比例(精确到
)如下:
岗位 | 男性应聘人数 | 男性录用人数 | 男性录用比例 | 女性应聘人数 | 女性录用人数 | 女性录用比例 |
| 269 | 167 |
| 40 | 24 |
|
| 40 | 12 |
| 202 | 62 |
|
| 177 | 57 |
| 184 | 59 |
|
| 44 | 26 |
| 38 | 22 |
|
| 3 | 2 |
| 3 | 2 |
|
总计 | 533 | 264 |
| 467 | 169 |
|
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘
岗位的6人中随机选择2人.记
为这2人中被录用的人数,求
的分布列和数学期望;
(Ⅲ)表中
各岗位的男性、女性录用比例都接近(二者之差的绝对值不大
),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差
,
和患感冒的小朋友人数(
/人)的数据如下:
温差 |
|
|
|
|
|
|
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中
,
,
.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合
与
的关系;
(Ⅱ)建立
关于
的回归方程(精确到
),预测当昼夜温差升高
时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:
.参考公式:相关系数:
,回归直线方程是
,
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
为偶函数,且函数
的图象的两相邻对称轴间的距离为
.
(1)求
的值;
(2)将函数
的图象向右平移
个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数
的图象,求函数
的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com