【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程是![]()
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设直线
与曲线
相交于
两点,当
时,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
上任意一点到其焦点的距离的最小值为1.
,
为抛物线上的两动点(
、
不重合且均异于原点),
为坐标原点,直线
、
的倾斜角分别为
,
.
(1)求抛物线方程;
(2)若
,求证直线
过定点;
(3)若
(
为定值),探求直线
是否过定点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程是![]()
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设直线
与曲线
相交于
两点,当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
(
)到点
的距离与点
到
轴的距离的差等于1,
(1)求动点
的轨迹
的方程;
(2)过点
的直线
与轨迹
相交于不同于坐标原点
的两点
,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,且椭圆C上恰有三点在集合
中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足
,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,左顶点为
.过点
作直线
交椭圆
于另一点
,交
轴于点
,点
为坐标原点.
(1)求椭圆
的方程:
(2)已知
为
的中点,是否存在定点
,对任意的直线
,
恒成立?若存在,求出点
的坐标;若不存在说明理由;
(3)过
点作直线
的平行线与椭圆
相交,
为其中一个交点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校今年高三毕业班报考飞行员学生的体重情况,将所得的数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右的前三组的频率之比为1:2:3,其中体重在
的有5人.
![]()
(1)求该校报考飞行员的总人数;
(2)从该校报考飞行员的体重在
学生中任选3人,设
表示体重超过70
的学生人数,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com