【题目】如图,四棱锥P-ABCD的底面为矩形,且AB=
,BC=1,E,F分别为AB,PC中点.
![]()
(1)求证:EF∥平面PAD;
(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.
【答案】证明:(1)方法一:取线段PD的中点M,连结FM,AM.
![]()
因为F为PC的中点,所以FM∥CD,且FM=
CD.
因为四边形ABCD为矩形,E为AB的中点,
所以EA∥CD,且EA=
CD.
所以FM∥EA,且FM=EA.
所以四边形AEFM为平行四边形.
所以EF∥AM. ……………………… 5分
又AM平面PAD,EF平面PAD,所以EF∥平面PAD. ………7分
方法二:连结CE并延长交DA的延长线于N,连结PN.
因为四边形ABCD为矩形,所以AD∥BC,
所以∠BCE=∠ANE,∠CBE=∠NAE.
又AE=EB,所以△CEB≌△NEA.所以CE=NE.
又F为PC的中点,所以EF∥NP.………… 5分
又NP平面PAD,EF平面PAD,所以EF∥平面PAD. ……………7分
方法三:取CD的中点Q,连结FQ,EQ.
在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.
所以四边形AEQD为平行四边形,所以EQ∥AD.
又AD平面PAD,EQ平面PAD,所以EQ∥平面PAD. ………………2分
因为Q,F分别为CD,CP的中点,所以FQ∥PD.
又PD平面PAD,FQ平面PAD,所以FQ∥平面PAD.
又FQ,EQ平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD.…………… 5分
因为EF平面EQF,所以EF∥平面PAD. ……………………………… 7分
(2)设AC,DE相交于G.
在矩形ABCD中,因为AB=
BC,E为AB的中点.所以
=
=
.
又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.
又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.
由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC. ……………………… 10分
因为平面PAC⊥平面ABCD 因为DE平面ABCD,所以DE⊥平面PAC,
又DE平面PDE,所以平面PAC⊥平面PDE. ………………………… 14分
【解析】略
科目:高中数学 来源: 题型:
【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面
和两条长度相等的直线型路面
、
,桥面跨度
的长不超过
米,拱桥
所在圆的半径为
米,圆心
在水面
上,且
和
所在直线与圆
分别在连结点
和
处相切.设
,已知直线型桥面每米修建费用是
元,弧形桥面每米修建费用是
元.
![]()
(1)若桥面(线段
、
和弧
)的修建总费用为
元,求
关于
的函数关系式;
(2)当
为何值时,桥面修建总费用
最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某市公益志愿者的年龄分布情况,有关部门通过随机抽样,得到如图1的频率分布直方图.
![]()
(1)求a的值,并估计该市公益志愿者年龄的平均数(同一组中的数据用该组区间的中点值作代表);
(2)根据世界卫生组织确定新的年龄分段,青年是指年龄15~44岁的年轻人.据统计,该市人口约为300万人,其中公益志愿者约占总人口的40%.试根据直方图估计该市青年公益志愿者的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为( )
A. (0,1) B.
C.
D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:
(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;
(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;
![]()
(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150,170]的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列
列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求
的分布列及数学期望.
附
,其中![]()
| 0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com