【题目】函数
是定义域为
的偶函数,当
时,
若关于
的方程
有且仅有8个不同实数根,则实数
的取
值范围是
【答案】![]()
【解析】当0≤x≤2时,y=-
递减,当x>2时,y=
递增,
由于函数y=f(x)是定义域为R的偶函数,
则f(x)在(-∞,-2)和(0,2)上递减,在(-2,0)和(2,+∞)上递增,
当x=0时,函数取得极大值0;当x=±2时,取得极小值-1.
当0≤x≤2时,y=-
∈[-1,0].
当x>2时,y=
∈[-1,-
要使关于x的方程
,有且仅有8个不同实数根,
设t=f(x),则t2+at+
=0的两根均在(-1,- ![]()
故答案为 ![]()
本题主要考查函数的单调性、奇偶性的应用以及函数的零点问题。根据题意先分析函数的单调性和值域,要使函数有8个不同实数根,转化为方程的两个根在(-1,- 3/ 4 )上,由二次方程根的分布即可列出不等式组进行求解即可。
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为直角梯形,
,且
,
平面
.![]()
(1)求
与平面
所成角的正弦值;
(2)棱
上是否存在一点
满足
?若存在,求
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
过
,倾斜角为
.以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的参数方程和曲线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
、
两点,且
,求直线
的斜率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t , 使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在
上是减函数,求实数
的取值范围;
(2)当
时,分别求函数
的最小值和
的最大值,并证明当
时,
成立;
(3)令
,当
时,判断函数
有几个不同的零点并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程选讲.
在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程为
,曲线
的参数方程为
.
(1)写出直线
与曲线
的直角坐标方程;
(2)过点M平行于直线
的直线与曲线
交于
两点,若
,求点M轨迹的直角坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com