题目列表(包括答案和解析)
13、(2011•江津区)在梯形ABCD中,AD∥BC,中位线长为5,高为6,则它的面积是 30 .
考点:梯形中位线定理。
专题:计算题。
分析:利用梯形的中位线的定义求得两底和,在利用梯形的面积计算方法计算即可.
解答:解:∵中位线长为5,
∴AD+BC=2×5=10,
∴梯形的面积为:
,
故答案为30.
点评:本题考查的知识比较全面,需要用到梯形和三角形中位线定理以及平行四边形的性质.
12、(2011•江津区)分解因式:2x3﹣x2= x2(2x﹣1) .
考点:因式分解-提公因式法。
专题:因式分解。
分析:观察等式的右边,提取公因式x2即可求得答案.
解答:解:2x3﹣x2=x2(2x﹣1).
故答案为:x2(2x﹣1).
点评:此题考查了提公因式法分解因式.解题的关键是准确找到公因式.
11、(2011•江津区)今年长江中下游旱情严重,某地村民吃水都成问题,一消防大队决定支援灾区,为灾区人民送去饮用水13万吨,用科学记数法表示为 1.3×105吨.
考点:科学记数法-表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将13万用科学记数法表示为1.3×105.
故答案为:1.3×105.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、(2011•江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是![]()
④四边形AnBnCnDn的面积是
.
![]()
A、①② B、②③
C、②③④ D、①②③④
考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质。
专题:规律型。
分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:
①根据矩形的判定与性质作出判断;
②根据菱形的判定与性质作出判断;
③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;
④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
解答:解:①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形ABCD是平行四边形;
∴B1D1=A1C1(平行四边形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故本选项错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;
③根据中位线的性质易知,A5B5=
A3B3=
×
A1B1=
×
×
AB,B5C5=
B3C3=
×
B1C1=
×
×
BC,
∴四边形A5B5C5D5的周长是2×
(a+b)=
;
故本选项正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是
;
故本选项错误;
综上所述,②③④正确;
故选C.
![]()
点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
9、(2011•江津区)已知关于x的一元二次方程(a﹣l)x2﹣2x+l=0有两个不相等的实数根,则a的取值范围是( )
A、a<2 B、a>2
C、a<2且a≠l D、a<﹣2
考点:根的判别式。
专题:计算题。
分析:利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.
解答:解:△=4﹣4(a﹣1)
=8﹣4a>0
得:a<2.
又a﹣1≠0
∴a<2且a≠1.
故选C.
点评:本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.
8、(2011•江津区)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于0点,对于各图中的两个三角形而言,下列说法正确的是( )
![]()
A、都相似 B、都不相似
C、只有(1)相似 D、只有(2)相似
考点:相似三角形的判定。
分析:图(1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定(1)中的两个三角形相似;
图(2)根据图形中的已知条件,即可证得
,又由对顶角相等,即可根据对应边成比例且夹角相等的三角形相似证得相似.
解答:解:
如图(1)∵∠A=35°,∠B=75°,
∴∠C=180°﹣∠A﹣∠B=70°,
∵∠E=75°,∠F=70°,
∴∠B=∠E,∠C=∠F,
∴△ABC∽△DEF;
如图(2)∵OA=4,OD=3,OC=8,OB=6,
∴
,
∵∠AOC=∠DOB,
∴△AOC∽△DOB.
故选A.
点评:此题考查了相似三角形的判定.注意有两角对应相等的三角形相似与对顶角相等,即可根据对应边成比例且夹角相等的三角形相似的定理的应用.
7、(2011•江津区)某课外学习小组有5人,在一次数学测验中的成绩分别是:120,100,135,100,125,则他们的成绩的平均数和众数分别是( )
A、116和100 B、116和125
C、106和120 D、106和135
考点:众数;中位数。
分析:众数的定义求解;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.
解答:解:在这一组数据中100是出现次数最多的,故众数是100;
他们的成绩的平均数为:(120+100+135+100+125)÷5=116.
故选A.
点评:此题主要考查了众数以及平均数的求法,此题比较简单注意计算时要认真减少不必要的计算错误.
6、(2011•江津区)已知如图,A是反比例函数
的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是( )
![]()
A、3 B、﹣3
C、6 D、﹣6
考点:反比例函数系数k的几何意义。
分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=
|k|.
解答:解:根据题意可知:S△AOB=
|k|=3,
又反比例函数的图象位于第一象限,k>0,
则k=6.
故选C.
点评:本题主要考查了反比例函数
中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为
|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
5、(2011•江津区)下列说法不正确是( )
A、两直线平行,同位角相等 B、两点之间直线最短
C、对顶角相等 D、半圆所对的圆周角是直角
考点:圆周角定理;线段的性质:两点之间线段最短;对顶角、邻补角;平行线的性质。
专题:常规题型。
分析:利用平行线的性质可以判断A;利用线段公理可以判断B;利用对顶角的性质可以判断C;利用圆周角定理可以判断D.
解答:解:A、由平行线的性质可以得到本选项正确;
B、∵两点之间线段最短,
∴两点之间直线最短错误,故本选项错误;
C、利用对顶角的性质可以判断本选项C正确;
D、∵半圆或直径所对的圆周角是直角,正确.
故选B.
点评:本题考查了圆周角定理及对顶角、邻补角及平行线的性质,是一道综合考查几何定理或概念的基础题,难度较小.
4、(2011•江津区)直线y=x﹣1的图象经过的象限是( )
A、第一、二、三象限 B、第一、二、四象限
C、第二、三、四象限 D、第一、三、四象限
考点:一次函数的性质。
专题:计算题。
分析:由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.
解答:解:直线y=x﹣1与y轴交于(0,﹣1)点,
且k=1>0,y随x的增大而增大,
∴直线y=x﹣1的图象经过第一、三、四象限.
故选D.
点评:本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com