题目列表(包括答案和解析)
24. 解:(1)∵点
在
上,
∴
,
∴
,
∴
.
(2)连结
, 由题意易知
,
∴
.
(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.
第一种情况:当b>2a时,存在最大值及最小值;
因为
的边
,故当F点到BD的距离取得最大、最小值时,
取得最大、最小值.
如图②所示
时,
的最大值=![]()
的最小值=![]()
第二种情况:当b=2a时,存在最大值,不存在最小值;
的最大值=
.(如果答案为4a2或b2也可)
23. 解(Ⅰ)当
,
时,抛物线为
,
方程
的两个根为
,
.
∴该抛物线与
轴公共点的坐标是
和
. ················································ 2分
(Ⅱ)当
时,抛物线为
,且与
轴有公共点.
对于方程
,判别式
≥0,有
≤
. ········································ 3分
①当
时,由方程
,解得
.
此时抛物线为
与
轴只有一个公共点
.·································
4分
②当
时,
时,
,
时,
.
由已知
时,该抛物线与
轴有且只有一个公共点,考虑其对称轴为
,
应有
即![]()
解得
.
综上,
或
. ················································································ 6分
(Ⅲ)对于二次函数
,
由已知
时,
;
时,
,
又
,∴
.
于是
.而
,∴
,即
.
∴
. ············································································································ 7分
∵关于
的一元二次方程
的判别式
,
∴抛物线
与
轴有两个公共点,顶点在
轴下方.····························· 8分
又该抛物线的对称轴
,
由
,
,
,
得
,
∴
.
又由已知
时,
;
时,
,观察图象,
可知在
范围内,该抛物线与
轴有两个公共点. ············································ 10分
22. 解:( 1)由已知得:![]()
解得
c=3,b=2
∴抛物线的线的解析式为![]()
(2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)
设对称轴与x轴的交点为F
所以四边形ABDE的面积=![]()
=![]()
=![]()
=9
(3)相似
如图,BD=![]()
BE=![]()
DE=![]()
所以
,
即:
,所以
是直角三角形
所以
,且
,
所以
.
21.解:
(1)m=-5,n=-3
(2)y=
x+2
(3)是定值.
因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h,
设△ABC AB边上的高为H,
则利用面积法可得:
![]()
(CM+CN)h=MN﹒H
![]()
又 H=![]()
化简可得 (CM+CN)﹒![]()
故
20. 解:(1)如图,过点B作BD⊥OA于点D.
在Rt△ABD中,
∵∣AB∣=
,sin∠OAB=
,
∴∣BD∣=∣AB∣·sin∠OAB
=
×
=3.
又由勾股定理,得
![]()
![]()
∴∣OD∣=∣OA∣-∣AD∣=10-6=4.
∵点B在第一象限,∴点B的坐标为(4,3). ……3分
设经过O(0,0)、C(4,-3)、A(10,0)三点的抛物线的函数表达式为
y=ax2+bx(a≠0).
由![]()
∴经过O、C、A三点的抛物线的函数表达式为
……2分
(2)假设在(1)中的抛物线上存在点P,使以P、O、C、A为顶点的四边形为梯形
①∵点C(4,-3)不是抛物线
的顶点,
∴过点C做直线OA的平行线与抛物线交于点P1 .
则直线CP1的函数表达式为y=-3.
对于
,令y=-3
x=4或x=6.
∴![]()
而点C(4,-3),∴P1(6,-3).
在四边形P1AOC中,CP1∥OA,显然∣CP1∣≠∣OA∣.
∴点P1(6,-3)是符合要求的点. ……1分
②若AP2∥CO.设直线CO的函数表达式为![]()
将点C(4,-3)代入,得![]()
∴直线CO的函数表达式为![]()
于是可设直线AP2的函数表达式为![]()
将点A(10,0)代入,得![]()
∴直线AP2的函数表达式为![]()
由
,即(x-10)(x+6)=0.
∴![]()
而点A(10,0),∴P2(-6,12).
过点P2作P2E⊥x轴于点E,则∣P2E∣=12.
在Rt△AP2E中,由勾股定理,得
![]()
而∣CO∣=∣OB∣=5.
∴在四边形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.
∴点P2(-6,12)是符合要求的点. ……1分
③若OP3∥CA,设直线CA的函数表达式为y=k2x+b2
将点A(10,0)、C(4,-3)代入,得
![]()
∴直线CA的函数表达式为![]()
∴直线OP3的函数表达式为![]()
由
即x(x-14)=0.
∴![]()
而点O(0,0),∴P3(14,7).
过点P3作P3E⊥x轴于点E,则∣P3E∣=7.
在Rt△OP3E中,由勾股定理,得
![]()
而∣CA∣=∣AB∣=
.
∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.
∴点P3(14,7)是符合要求的点. ……1分
综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),
使以P、O、C、A为顶点的四边形为梯形. ……1分
(3)由题知,抛物线的开口可能向上,也可能向下.
①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N.
可设抛物线的函数表达式为
(a>0).
即![]()
![]()
如图,过点M作MG⊥x轴于点G.
∵Q(-2k,0)、R(5k,0)、G(
、N(0,-10ak2)、M![]()
∴![]()
![]()
![]()
![]()
![]()
![]()
∴
……2分
②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,
同理,可得
……1分
综上所知,
的值为3:20.
……1分
19. 解:(1)在
中,令![]()
![]()
![]()
,![]()
,
····················································· 1分
又
点
在
上
![]()
![]()
的解析式为
···················································································· 2分
(2)由
,得
·························································· 4分
,![]()
,
····································································································· 5分
······························································································· 6分
(3)过点
作
于点![]()
![]()
![]()
····································································································· 7分
················································································································ 8分
由直线
可得:![]()
在
中,
,
,则![]()
,
····························································································· 9分
![]()
·························································································· 10分
··································································································· 11分
此抛物线开口向下,
当
时,![]()
当点
运动2秒时,
的面积达到最大,最大为
.
18. 解:(1)点
在
轴上························································································· 1分
理由如下:
连接
,如图所示,在
中,
,
,![]()
,![]()
由题意可知:![]()
![]()
点
在
轴上,
点
在
轴上.············································································ 3分
(2)过点
作
轴于点![]()
,![]()
在
中,
,![]()
点
在第一象限,
点
的坐标为
····························································································· 5分
由(1)知
,点
在
轴的正半轴上
点
的坐标为![]()
点
的坐标为
······························································································· 6分
抛物线
经过点
,
![]()
由题意,将
,
代入
中得
解得![]()
所求抛物线表达式为:
·························································· 9分
(3)存在符合条件的点
,点
.············································································ 10分
理由如下:
矩形
的面积![]()
以
为顶点的平行四边形面积为
.
由题意可知
为此平行四边形一边,
又![]()
边上的高为2······································································································ 11分
依题意设点
的坐标为![]()
点
在抛物线
上
![]()
解得,
,![]()
,![]()
以
为顶点的四边形是平行四边形,
![]()
,
,
当点
的坐标为
时,
点
的坐标分别为
,
;
当点
的坐标为
时,
点
的坐标分别为
,
.·················································· 14分
(以上答案仅供参考,如有其它做法,可参照给分)
17. 解:(1)
直线
与
轴交于点
,与
轴交于点
.
,
······························································································· 1分
点
都在抛物线上,
![]()
抛物线的解析式为
······························································ 3分
顶点
····································································································· 4分
(2)存在····················································································································· 5分
··················································································································· 7分
·················································································································· 9分
(3)存在···················································································································· 10分
理由:
解法一:
延长
到点
,使
,连接
交直线
于点
,则点
就是所求的点.
··························································································· 11分
过点
作
于点
.
点在抛物线
上,![]()
在
中,
,
,
,
在
中,
,
,
,
····················································· 12分
设直线
的解析式为![]()
解得![]()
······································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
.········· 14分
解法二:
过点
作
的垂线交
轴于点
,则点
为点
关于直线
的对称点.连接
交
于点
,则点
即为所求.···················································································· 11分
过点
作
轴于点
,则
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
为线段
的垂直平分线,可证得
为等边三角形,
垂直平分
.
即点
为点
关于
的对称点.
··················································· 12分
设直线
的解析式为
,由题意得
解得![]()
······································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
. 1
16.
解:(1)
,
.
![]()
![]()
(2)当
时,过
点作
,交
于
,如图1,
则
,
,
,
.
(3)①
能与
平行.
若
,如图2,则
,
即
,
,而
,
.
②
不能与
垂直.
若
,延长
交
于
,如图3,
则
.
.
![]()
![]()
.
又
,
,
,
,而
,
不存在.
15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);
则设抛物线的解析式为
(a≠0)
又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-3···································································································· 3分
自变量范围:-1≤x≤3···················································································· 4分
解法2:设抛物线的解析式为
(a≠0)
根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上
∴
,解之得:![]()
∴y=x2-2x-3··············································································· 3分
自变量范围:-1≤x≤3······························································ 4分
(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,
在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=![]()
在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
∴点C、E的坐标分别为(0,
),(-3,0) ·················································· 6分
∴切线CE的解析式为
··························································· 8分
(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ·························· 9分
由题意可知方程组
只有一组解
即
有两个相等实根,∴k=-2············································· 11分
∴过点D“蛋圆”切线的解析式y=-2x-3····················································· 12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com