题目列表(包括答案和解析)

 0  47572  47580  47586  47590  47596  47598  47602  47608  47610  47616  47622  47626  47628  47632  47638  47640  47646  47650  47652  47656  47658  47662  47664  47666  47667  47668  47670  47671  47672  47674  47676  47680  47682  47686  47688  47692  47698  47700  47706  47710  47712  47716  47722  47728  47730  47736  47740  47742  47748  47752  47758  47766  447348 

7.用待定系数法求二次函数的解析式

 (1)一般式:.已知图像上三点或三对的值,通常选择一般式.

 (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.

 (3)交点式:已知图像与轴的交点坐标,通常选用交点式:.

试题详情

6.抛物线中,的作用

 (1)决定开口方向及开口大小,这与中的完全一样.

 (2)共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线

,故:①时,对称轴为轴;②(即同号)时,对称轴在轴左侧;③(即异号)时,对称轴在轴右侧.

 (3)的大小决定抛物线轴交点的位置.

    当时,,∴抛物线轴有且只有一个交点(0,):

    ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.

    以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .

试题详情

5.求抛物线的顶点、对称轴的方法

 (1)公式法:,∴顶点是,对称轴是直线.

 (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.

 (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.

试题详情

4.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

试题详情

3.抛物线的三要素:开口方向、对称轴、顶点.

  ①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;

相等,抛物线的开口大小、形状相同.

  ②平行于轴(或重合)的直线记作.特别地,轴记作直线.

试题详情

2.二次函数用配方法可化成:的形式,其中.

试题详情

1.定义:一般地,如果是常数,,那么叫做的二次函数.

试题详情

31、在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长。

试题详情

30、如图所示,在中,,CD是AB边上高,若AD=8,BD=2,

求CD。

试题详情

29、如图所示,15只空油桶(每只油桶底面直径均为)堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?(结果保留一位小数)

试题详情


同步练习册答案