题目列表(包括答案和解析)
11. 设AD=x米,则AB为(10+x)米,AC为(15-x)米,BC为5米,∴(x+10)2+52=(15-x)2,解得x=2,∴10+x=12(米)
AC2=AB2+BC2=32+42=25, ∴ AC=5.
在△ACD中,∵ AC2+CD2=25+122=169,
而 AB2=132=169,
∴ AC2+CD2=AB2,∴ ∠ACD=90°.
故S四边形ABCD=S△ABC+S△ACD=
AB·BC+
AC·CD=
×3×4+
×5×12=6+30=36.
10. 解:由勾股定理得AE2=25,EF2=5,
AF2=20,∵AE2= EF2 +AF2,
∴△AEF是直角三角形
90°.6.54,提示:先根基勾股定理逆定理得三角形是直角三角形,面积为
7.直角,提示:
;8.
,提示:先根据勾股定理逆定理判断三角形是直角三角形,再利用面积法求得
;
18.2勾股定理的逆定理答案:
12. 观察下列勾股数:
第一组:3=2×1+1, 4=2×1×(1+1), 5=2×1×(1+1)+1;
第二组:5=2×2+1, 12=2×2×(2+1), 13=2×2×(2+1)+1;
第三组:7=2×3+1, 24=2×3×(3+1), 25=2×3×(3+1)+1;
第三组:9=2×4+1, 40=2×4×(4+1), 41=2×4×(4+1)+1;
……
观察以上各组勾股数的组成特点,你能求出第七组的
各应是多少吗?第
组呢?
11. 如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的
C处有一筐水果,一只猴子从D处上爬到树顶A处,
利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处
滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,
求树高AB.
10.
如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=
BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.
9. 如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,
求四边形ABCD的面积.
8.在三角形ABC中,AB=12
,AC=5
,BC=13
,则BC边上的高为AD=
.
7.已知三角形ABC的三边长为
满足
,
,则此三角形为
三角形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com