题目列表(包括答案和解析)
5.在RtΔACB中, ∠C=900, ∠A=300,点D(与点A不重合)在边AC上,且AD<CD,若经过点D的直线截ΔACB所得的三角形与ΔACB相似,则这样的直线共有 条.
4.如图,ΔABC的中线AD、BE相交于点F,则
= .
3. 方程
的根是
.
2..方程
的根是
.
1.分解因式:
.
26.已知:抛物线
与x轴的一个交点为A(-1,0).
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积
为9,求此抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5∶2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
25.已知:在ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE∶FD=4∶3.
(1)求证:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面积.
|
24.
已知:关于x的方程
的两个实数根是
、
,且
如果关于x的另一个方程
的两个实数根都在
和
之间,求m的值.
23.列方程或方程组解应用题:
在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆.”
乙同学说:“四环路比三环路车流量每小时多2000辆.”
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.
22.如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,
和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连结________.
(2)猜想:________=________.
(3)证明:
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com