0  193962  193970  193976  193980  193986  193988  193992  193998  194000  194006  194012  194016  194018  194022  194028  194030  194036  194040  194042  194046  194048  194052  194054  194056  194057  194058  194060  194061  194062  194064  194066  194070  194072  194076  194078  194082  194088  194090  194096  194100  194102  194106  194112  194118  194120  194126  194130  194132  194138  194142  194148  194156  447090 

1、通电导体周围的磁场

活动一、探究奥斯特实验

引导学生利用课桌上的实验器材当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。)

进一步提问引入新课:小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。

指导学生将一根与电源、开关相连接的直导线(铜芯线)沿南北方向水平放置在小磁针上方,请同学们观察直导线通、断电时小磁针的偏转情况。

提问:观察到什么现象?(观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。)

进一步提问:通过这个现象可以得出什么结论呢?

师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。

教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。

(1)实验表明:通电导线和磁体一样,周围存在着磁场。

提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢?

重做上面的实验,请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。 

提问:同学们观察到什么现象?这说明什么?

(观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。)

(2)电流的磁场方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。

提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢?

学生看书讨论后回答:因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现,有力推动了电磁学的研究和发展。        

试题详情

电池盒、导线(一根硬直导线)、开关、电灯、小磁针、演示螺旋管、干电池2-4节,小磁针,铁屑等。

试题详情

2、教学难点及施教策略

教学难点:熟练运用安培定则由电流方向判定磁场方向、螺旋管的磁极,由螺旋管的磁极和绕法判定电流方向,由螺旋管的磁极和电流方向画出螺旋管绕法。

施教策略: 利用学生实验器材,搞清螺旋管的的结构和安培定则的判断方法。

试题详情

1、教学重点及施教策略

教学重点:知道电能生磁,掌握安培定则并能熟练应用。

施教策略:利用学生的自备器材探究实验和教师的演示实验相结合

试题详情

复习电荷间相互作用的规律,从电现象和磁现象的相似,推理电与磁之间的存在联系,引出奥斯特实验是关键,实验时将通电直导线尽量靠近小磁针,用多节干电池做电源。

试题详情

3、情感、态度与价值观

(1)通过对“电生磁”的研究和对“通电螺旋管的外部磁场”的探究,进一步激发学生学习科学的 兴趣。

(2)通过本节课的学习,培养学生尊重事实的、实事求是的科学态度。

试题详情

2、过程与方法

(1)经历电生磁的发现过程,能简单描述在探究过程中观察到的现象

(2)能在实验和探究中发现和提出问题,并能制定简单的实验方案

(3)在讨论、评估中能清晰的陈述自己的观点,有评估和听取别人意见的意识

试题详情

1、知识与技能

(1)道电流周围存在着磁场。

(2)知道通电螺线管外部的磁场与条形磁铁相似。

(3)会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。

试题详情

35.4 73.1 136 144 352

  这里未考虑速度,单看能耗,似乎磁浮列车要比普通列车大,如果计及速度因素,考虑在不同速度下的功能指标,结论就不一样了。当时速达220公里左右时,普通列车与磁浮列车的功耗基本上一致。再提高时速,磁浮列车的优越性就明显了,而普通列车已无法达到。

  (5)安全可靠。磁浮列车(EMS型)悬浮高度大约 l厘米左右,万一悬浮系统失效,应急车轮能支撑列车继续行进。另外,磁浮列车车体两侧像钳子一样卡住路轨,不易出轨,比普通列车安全。

  (6)寿命长、维修费用低。这是显而易见的。

  从综合效益考虑,磁浮列车是很有前途的一种交通工具。

  德、日、美等国的研制概况

  在世界上,重视磁浮列车研制并形成自己研制系列的国家是德国和日本。

  德国是最早开始研究磁浮列车技术的国家,其研究主要集中在 EMS型磁浮列车技术上, 目前在技术上占有优势。它的 EMS型磁浮列车发展计划称为 TRASPAID,相应的车型均用 TR加编号命名。世界上第一台 EMS型磁浮样车诞生在德国,它是1969年德国马法伊研制的模型车 TR0l。世界上第一台有载人能力的磁浮列车也诞生在德国,即1971年由德国航空公司(MBB)研制成功的全尺寸7吨车,有人也把它称为 TRO2(一般 TRO2是指马法伊1971年研制的12吨车,时速164公里)。 目前 TR系列已发展到 TRO7(其中TRO3是气垫车), TRO4以前的曾用火箭推进,从 TRO5开始改用直线同步电机驱动。TRO5轨长 l公里,最高时速90公里,载乘70人,1974年在汉堡国际博览会上展出,历时3周,载客4万余人次,未发生任何故障。

  此后,德国实施TVE计划,建造 TRO6和拉腾镇的爱姆斯朗(Emsland)试验场,以试验列车的转弯、爬坡、行进速度等功能。试验场的环形轨道长31.5公里,倾角1.2度,坡度10%,设有高4.7米,跨度25米的高架路轨和三个道岔的试验线。起动时间约1分钟,时速200公里,全程运行时间12分钟,最高时速412.6公里,1690米弯道运行时速256公里。

  后又建造 TRO7,它是 TRO6的改进型,1988年投入试运行。到1989年底,包括商业运行在内共试运行1.2万公里,软硬件耐久试验达5万小时,在隧道进行了各种雷击试验。

  在 EMS型磁浮列车技术已成熟的基础上,德国还计划实施汉堡至柏林的磁浮线路工程。1996年正式动工,2001年交付使用。线路全长287公里,设计时速500公里,全程运行时间53分钟。每列车由4节车厢组成,共332个座位,每10分钟发 l列车,全天运行95列车。

  德国西门子公司也曾发展过 EDS型磁浮列车技术,并在1976年获得时速12O公里的结果。由于其在能耗指标、强磁污染、发展风险等方面,都明显不如 EMS型,自1979年起,德国终止了 EDS型的研究。德国快速运输试验公司的试验专务理事布勒富克(F. Blefuk)说:“我们在1977年之前曾就超导和常导两种方式进行了研究,两种方式的优缺点的综合对比分析结果表明,常导方式更合适。”德国研制EDS型的有关技术已用于其他方面,如核磁共振技术、直线同步电机等。

  日本地少人多,历来重视铁路技术的发展。日本航空公司(JAL)1974年开始 EMS型磁浮列车的设计研究工作, 先后研制出HSST-01、02、O3等型号。HSST-03于1985年和1986年分别在日本筑波和加拿大温哥华展出,共进行349天载人运行。在 HSST-03的基础上改进, JAL又建造了 HSST-04和 HSST-05,运行可靠性分别达到96.2%和99.8%。HSST系列均属 EMS型,在低速下(比如时速100公里)行驶,噪声很低,很适于作市内交通工具。

  日本国有铁路(JNR)则致力于 EDS型研制,于60年代中期就起步研究。1972年研制成的 ML100是世界上第一台 EDS型磁浮列车。1979年又研制成功 ML5O0,时速517公里,是陆面交通工具移动速度的世界纪录。若在东京与成田机场架设这样的线路,单程仅需10分钟,由东京到大贩也仅需 l小时。日本很重视 EDS型技术的开发,并把它与高温超导材料的研究联系在一起,以求更快发展。

  英国是最早进行磁浮列车商业运营的国家,连接伯明翰车站与机场的900米运行线1984年投入运营,采用 EMS型,时速48公里,尚在使用,但研究进展不大。

  美国地广人稀,公路网和空中航线四通八达,长期忽视铁路发展。进入9O年代后,美国科技界、工业界对磁浮列车技术表现出十分浓厚的兴趣,大有急起直追之势。1993年5月,第12届国际磁浮列车会议在美国举行。美国国会拟定拨款7.25亿美元支持磁浮列车技术的发展,美国政府也成立 NMI组织(NationalMaglev Initiative),拟分四个阶段发展此项技术。现已进行系统概念定义(SCD)研究。 SCD方案中,三个为 EDS型,一个为 EMS型。EMS型的悬浮与推进系统原理上与德国的TRASPAID类似,但采用超导型的概念(追求技术新),悬浮间隙为4厘米(德国为 l厘米),时速超过500公里(追求速度快)。1993年7月开始概念设计,1995年进入工程实验阶段,1997年7月以后开始第四阶段,建造应用线路。

  由上可见,尽管磁浮列车有明显的优点,但由于各国情况不同,所以对它的重视程度和发展路线也各不相同。除上述国家外,法国、锻国、韩国也都有研究计划。考虑到劳动力价格愈来愈高,往返时间将成为商品生产中非常关键的因素。在未来的市区至机场、市中心至卫星城之间的短程交通(50公里以内),城市间的中程交通(50-100公里),作为交通走廊的远程交通(lO0-100O公里)中,磁浮列车都是有竞争力的。

  最初,发展磁浮列车技术就是追求高速。当时, HSST-01的目标就是为时速超过300公里提供技术,即使电机推不上去,也要用火箭推上去。但发展至今,由于 HSST系列结构简单、噪声低、研制周期短、轨道造价低,对于城区、城郊的公共交通有明显的优越性,人们反而对它的中低速(时速在200公里以内)性能感兴趣。

  磁浮列车技术在中国前景广阔

  中国幅员辽阔,人口众多,经济正处起飞阶段,交通问题十分紧迫。

  就陆路交通而言,中国可耕地面积仅占国土面积的17%,可耕地十分宝贵,因此不宜大量发展占地面积大的交通设施。据统计,津塘高速公路每公里占地8.1万平方米,而铁路每公里仅占地1.63万平方米,普通路基的磁浮列车占地与铁路相当,而高架的磁浮列车占地要少得多,即使是双轨的,占地面积也仅为高速公路的5%。可耕地宝贵是中国一项重要的基本国情,由此出发,中国应优先发展铁路。

  据1989年统计,中国铁路总长5.26万公里,人均铁路拥有量在世界上排在100位之后,按国土面积平均排在世界70位之后,然而所完成的客货周转量却居世界第3位,几乎与美国总长30万公里的铁路所完成的相等。中国铁路主要干线的货运只能满足社会需求量的50%-70%,客车超员高达50%-100%。因此,中国再造10倍以上的铁路也不为过。磁浮列车作为一种采用高技术的铁路运输工具,其单位能耗不仅比飞机、汽车低,与其他铁路运输工具相比,也是最低的。它的造价也只略高于电气化铁路。在中国铁路发展的广阔天地中,磁浮列车技术有自己的用武之地。

  经济的起飞带来城市的繁荣,在人口集中的大城市,市内公共交通以及市区与城郊的交通问题变得更为严峻。 中国的城市轨道列车,全国总计也不足50公里。修建地下铁路,造价昂贵,按中国的国力,近期不可能大规模发展。修建中低速的高架磁浮列车,造价要合理得多,而且噪声小,占地面积小,是解决城市交通问题的理想方案。

  因此,磁浮列车技术的研究在中国也受到充分重视。 自80年代初开始磁悬浮运行技术的探讨和基础研究,其中包括悬浮控制技术研究、小型磁浮模型车和模型装置的研制和理论分析,以及18吨载人磁浮列车方案设计等。中国第一台磁浮列车原理模型诞生于1989年,该车属 EMS型,类似日本的 HSST结构,车体重80千克,由 LIM系统推进,运行速度可达10米/秒,曾在长沙、北京展出多次。现在,磁浮列车技术的研究已列入国家八五科技攻关项目,重点发展 EMS型,初步决定建立磁浮试验线路。在资金和价格合理的条件下,还考虑引进国外较为成熟的关键技术,以促进磁浮列车技术在中国的发展。

  磁浮列车的核心技术是悬浮与推进,并需要一套复杂的自动控制系统。它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果,因而国际上把磁浮列车列为高技术产品。但对于已比较成熟的 EMS型磁浮列车来说,它是高技术产品,却并非高价产品。它所依据的基础技术均属已成熟的技术,也不需要等待某一项技术的突破或某种特殊材料与器件的出现,所有材料与器件都是国内市场上可买到的商品。需要攻关的关键是组成系统的技术和实现工程化。可以相信,一旦磁浮列车在中国某地的交通网络中出现,让人们实际体验到它的优越性,它在中国大地上的发展将是无可限量的。

试题详情

4.作业:①完成课本上的“想想议议”。

②课本上的练习1、2、3题。

试题详情


同步练习册答案