1、通电导体周围的磁场
活动一、探究奥斯特实验
引导学生利用课桌上的实验器材当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。)
进一步提问引入新课:小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。
指导学生将一根与电源、开关相连接的直导线(铜芯线)沿南北方向水平放置在小磁针上方,请同学们观察直导线通、断电时小磁针的偏转情况。
提问:观察到什么现象?(观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。)
进一步提问:通过这个现象可以得出什么结论呢?
师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。
教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。
(1)实验表明:通电导线和磁体一样,周围存在着磁场。
提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢?
重做上面的实验,请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。
提问:同学们观察到什么现象?这说明什么?
(观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。)
(2)电流的磁场方向跟电流的方向有关。当电流的方向变化时,磁场的方向也发生变化。
提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢?
学生看书讨论后回答:因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现,有力推动了电磁学的研究和发展。
电池盒、导线(一根硬直导线)、开关、电灯、小磁针、演示螺旋管、干电池2-4节,小磁针,铁屑等。
2、教学难点及施教策略
教学难点:熟练运用安培定则由电流方向判定磁场方向、螺旋管的磁极,由螺旋管的磁极和绕法判定电流方向,由螺旋管的磁极和电流方向画出螺旋管绕法。
施教策略: 利用学生实验器材,搞清螺旋管的的结构和安培定则的判断方法。
1、教学重点及施教策略
教学重点:知道电能生磁,掌握安培定则并能熟练应用。
施教策略:利用学生的自备器材探究实验和教师的演示实验相结合
复习电荷间相互作用的规律,从电现象和磁现象的相似,推理电与磁之间的存在联系,引出奥斯特实验是关键,实验时将通电直导线尽量靠近小磁针,用多节干电池做电源。
3、情感、态度与价值观
(1)通过对“电生磁”的研究和对“通电螺旋管的外部磁场”的探究,进一步激发学生学习科学的 兴趣。
(2)通过本节课的学习,培养学生尊重事实的、实事求是的科学态度。
2、过程与方法
(1)经历电生磁的发现过程,能简单描述在探究过程中观察到的现象
(2)能在实验和探究中发现和提出问题,并能制定简单的实验方案
(3)在讨论、评估中能清晰的陈述自己的观点,有评估和听取别人意见的意识
1、知识与技能
(1)道电流周围存在着磁场。
(2)知道通电螺线管外部的磁场与条形磁铁相似。
(3)会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。
35.4 73.1 136 144 352
这里未考虑速度,单看能耗,似乎磁浮列车要比普通列车大,如果计及速度因素,考虑在不同速度下的功能指标,结论就不一样了。当时速达220公里左右时,普通列车与磁浮列车的功耗基本上一致。再提高时速,磁浮列车的优越性就明显了,而普通列车已无法达到。
(5)安全可靠。磁浮列车(EMS型)悬浮高度大约 l厘米左右,万一悬浮系统失效,应急车轮能支撑列车继续行进。另外,磁浮列车车体两侧像钳子一样卡住路轨,不易出轨,比普通列车安全。
(6)寿命长、维修费用低。这是显而易见的。
从综合效益考虑,磁浮列车是很有前途的一种交通工具。
德、日、美等国的研制概况
在世界上,重视磁浮列车研制并形成自己研制系列的国家是德国和日本。
德国是最早开始研究磁浮列车技术的国家,其研究主要集中在 EMS型磁浮列车技术上, 目前在技术上占有优势。它的 EMS型磁浮列车发展计划称为 TRASPAID,相应的车型均用 TR加编号命名。世界上第一台 EMS型磁浮样车诞生在德国,它是1969年德国马法伊研制的模型车 TR0l。世界上第一台有载人能力的磁浮列车也诞生在德国,即1971年由德国航空公司(MBB)研制成功的全尺寸7吨车,有人也把它称为 TRO2(一般 TRO2是指马法伊1971年研制的12吨车,时速164公里)。 目前 TR系列已发展到 TRO7(其中TRO3是气垫车), TRO4以前的曾用火箭推进,从 TRO5开始改用直线同步电机驱动。TRO5轨长 l公里,最高时速90公里,载乘70人,1974年在汉堡国际博览会上展出,历时3周,载客4万余人次,未发生任何故障。
此后,德国实施TVE计划,建造 TRO6和拉腾镇的爱姆斯朗(Emsland)试验场,以试验列车的转弯、爬坡、行进速度等功能。试验场的环形轨道长31.5公里,倾角1.2度,坡度10%,设有高4.7米,跨度25米的高架路轨和三个道岔的试验线。起动时间约1分钟,时速200公里,全程运行时间12分钟,最高时速412.6公里,1690米弯道运行时速256公里。
后又建造 TRO7,它是 TRO6的改进型,1988年投入试运行。到1989年底,包括商业运行在内共试运行1.2万公里,软硬件耐久试验达5万小时,在隧道进行了各种雷击试验。
在 EMS型磁浮列车技术已成熟的基础上,德国还计划实施汉堡至柏林的磁浮线路工程。1996年正式动工,2001年交付使用。线路全长287公里,设计时速500公里,全程运行时间53分钟。每列车由4节车厢组成,共332个座位,每10分钟发 l列车,全天运行95列车。
德国西门子公司也曾发展过 EDS型磁浮列车技术,并在1976年获得时速12O公里的结果。由于其在能耗指标、强磁污染、发展风险等方面,都明显不如 EMS型,自1979年起,德国终止了 EDS型的研究。德国快速运输试验公司的试验专务理事布勒富克(F. Blefuk)说:“我们在1977年之前曾就超导和常导两种方式进行了研究,两种方式的优缺点的综合对比分析结果表明,常导方式更合适。”德国研制EDS型的有关技术已用于其他方面,如核磁共振技术、直线同步电机等。
日本地少人多,历来重视铁路技术的发展。日本航空公司(JAL)1974年开始 EMS型磁浮列车的设计研究工作, 先后研制出HSST-01、02、O3等型号。HSST-03于1985年和1986年分别在日本筑波和加拿大温哥华展出,共进行349天载人运行。在 HSST-03的基础上改进, JAL又建造了 HSST-04和 HSST-05,运行可靠性分别达到96.2%和99.8%。HSST系列均属 EMS型,在低速下(比如时速100公里)行驶,噪声很低,很适于作市内交通工具。
日本国有铁路(JNR)则致力于 EDS型研制,于60年代中期就起步研究。1972年研制成的 ML100是世界上第一台 EDS型磁浮列车。1979年又研制成功 ML5O0,时速517公里,是陆面交通工具移动速度的世界纪录。若在东京与成田机场架设这样的线路,单程仅需10分钟,由东京到大贩也仅需 l小时。日本很重视 EDS型技术的开发,并把它与高温超导材料的研究联系在一起,以求更快发展。
英国是最早进行磁浮列车商业运营的国家,连接伯明翰车站与机场的900米运行线1984年投入运营,采用 EMS型,时速48公里,尚在使用,但研究进展不大。
美国地广人稀,公路网和空中航线四通八达,长期忽视铁路发展。进入9O年代后,美国科技界、工业界对磁浮列车技术表现出十分浓厚的兴趣,大有急起直追之势。1993年5月,第12届国际磁浮列车会议在美国举行。美国国会拟定拨款7.25亿美元支持磁浮列车技术的发展,美国政府也成立 NMI组织(NationalMaglev Initiative),拟分四个阶段发展此项技术。现已进行系统概念定义(SCD)研究。 SCD方案中,三个为 EDS型,一个为 EMS型。EMS型的悬浮与推进系统原理上与德国的TRASPAID类似,但采用超导型的概念(追求技术新),悬浮间隙为4厘米(德国为 l厘米),时速超过500公里(追求速度快)。1993年7月开始概念设计,1995年进入工程实验阶段,1997年7月以后开始第四阶段,建造应用线路。
由上可见,尽管磁浮列车有明显的优点,但由于各国情况不同,所以对它的重视程度和发展路线也各不相同。除上述国家外,法国、锻国、韩国也都有研究计划。考虑到劳动力价格愈来愈高,往返时间将成为商品生产中非常关键的因素。在未来的市区至机场、市中心至卫星城之间的短程交通(50公里以内),城市间的中程交通(50-100公里),作为交通走廊的远程交通(lO0-100O公里)中,磁浮列车都是有竞争力的。
最初,发展磁浮列车技术就是追求高速。当时, HSST-01的目标就是为时速超过300公里提供技术,即使电机推不上去,也要用火箭推上去。但发展至今,由于 HSST系列结构简单、噪声低、研制周期短、轨道造价低,对于城区、城郊的公共交通有明显的优越性,人们反而对它的中低速(时速在200公里以内)性能感兴趣。
磁浮列车技术在中国前景广阔
中国幅员辽阔,人口众多,经济正处起飞阶段,交通问题十分紧迫。
就陆路交通而言,中国可耕地面积仅占国土面积的17%,可耕地十分宝贵,因此不宜大量发展占地面积大的交通设施。据统计,津塘高速公路每公里占地8.1万平方米,而铁路每公里仅占地1.63万平方米,普通路基的磁浮列车占地与铁路相当,而高架的磁浮列车占地要少得多,即使是双轨的,占地面积也仅为高速公路的5%。可耕地宝贵是中国一项重要的基本国情,由此出发,中国应优先发展铁路。
据1989年统计,中国铁路总长5.26万公里,人均铁路拥有量在世界上排在100位之后,按国土面积平均排在世界70位之后,然而所完成的客货周转量却居世界第3位,几乎与美国总长30万公里的铁路所完成的相等。中国铁路主要干线的货运只能满足社会需求量的50%-70%,客车超员高达50%-100%。因此,中国再造10倍以上的铁路也不为过。磁浮列车作为一种采用高技术的铁路运输工具,其单位能耗不仅比飞机、汽车低,与其他铁路运输工具相比,也是最低的。它的造价也只略高于电气化铁路。在中国铁路发展的广阔天地中,磁浮列车技术有自己的用武之地。
经济的起飞带来城市的繁荣,在人口集中的大城市,市内公共交通以及市区与城郊的交通问题变得更为严峻。 中国的城市轨道列车,全国总计也不足50公里。修建地下铁路,造价昂贵,按中国的国力,近期不可能大规模发展。修建中低速的高架磁浮列车,造价要合理得多,而且噪声小,占地面积小,是解决城市交通问题的理想方案。
因此,磁浮列车技术的研究在中国也受到充分重视。 自80年代初开始磁悬浮运行技术的探讨和基础研究,其中包括悬浮控制技术研究、小型磁浮模型车和模型装置的研制和理论分析,以及18吨载人磁浮列车方案设计等。中国第一台磁浮列车原理模型诞生于1989年,该车属 EMS型,类似日本的 HSST结构,车体重80千克,由 LIM系统推进,运行速度可达10米/秒,曾在长沙、北京展出多次。现在,磁浮列车技术的研究已列入国家八五科技攻关项目,重点发展 EMS型,初步决定建立磁浮试验线路。在资金和价格合理的条件下,还考虑引进国外较为成熟的关键技术,以促进磁浮列车技术在中国的发展。
磁浮列车的核心技术是悬浮与推进,并需要一套复杂的自动控制系统。它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果,因而国际上把磁浮列车列为高技术产品。但对于已比较成熟的 EMS型磁浮列车来说,它是高技术产品,却并非高价产品。它所依据的基础技术均属已成熟的技术,也不需要等待某一项技术的突破或某种特殊材料与器件的出现,所有材料与器件都是国内市场上可买到的商品。需要攻关的关键是组成系统的技术和实现工程化。可以相信,一旦磁浮列车在中国某地的交通网络中出现,让人们实际体验到它的优越性,它在中国大地上的发展将是无可限量的。
4.作业:①完成课本上的“想想议议”。
②课本上的练习1、2、3题。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com