11. [答案]
函数
的反函数是
,又
,即
,所以,
,故![]()
10.[答案]:2 ![]()
由a=c=
可知,
,所以
,
由正弦定理得
,
1.[答案]
2.[答案]
奇 3.[答案] 2 4、[答案]
5、w[答案]1 6、[答案] 2 7.[答案]
8. [答案]4条 9.[答案] 4
20.(本小题满分16分)
已知函数![]()
连云港市 高三数学信息试卷 第4页 (共4页)
连云港市2010届高考模拟卷
18.(本小题满分15分)
已知海岸边
两海事监测站相距![]()
,为了测量海平面上两艘油轮
间距离,在
两处分别测得
,
,
,![]()
(
在同一个水平面内).请计算出
两艘轮船间距离.
连云港市 高三数学信息试卷 第3页 (共4页)
19(本题满分16分)如图,抛物线
与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(Ⅰ)求双曲线
的方程;
(Ⅱ)以
为圆心的圆
与双曲线的一条渐近线相切,圆
:
.平面上有点
满足:存在过点
的无穷多对互相垂直的直线
,它们分别与圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长的比为
,试求所有满足条件的点
的坐标.
17.(本小题满分15分)
已知数列
的通项公式为![]()
(1)若
成等比数列,求
的值;
(2)当
且
时,
成等差数列,求
的值。
16.(本小题满分14分)
如图,在棱长为
的正方体
中,
为线段
上的点,且满足
.
(Ⅰ)当
时,求证:平面
平面
;
(Ⅱ)试证无论
为何值,三棱锥
的体积恒为定值;
15.(本小题满分14分)已知函数
其中
,![]()
(I)若
求
的值;
(Ⅱ)在(I)的条件下,若函数
的图像的相邻两条对称轴之间的距离等于
,求函数
的解析式;并求最小正实数
,使得函数
的图像象左平移
个单位所对应的函数是偶函数。
连云港市 高三数学信息试卷 第2页 (共4页)
20.(本小题满分16分)
已知函数
定义在R上.
(Ⅰ)若
可以表示为一个偶函数
与一个奇函数
之和,设
,
,求出
的解析式;
(Ⅱ)若
对于
恒成立,求m的取值范围;
(Ⅲ)若方程
无实根,求m的取值范围.
------------------------------------------------------------------------------------------------
江苏省扬州中学高三数学学科教研组制
高三 数学试卷 第4页 共4页
19.(本小题满分16分)
对于数列![]()
(1)已知
是一个公差不为零的等差数列,a5=6。
①当![]()
;
②若存在自然数
构成一个等比数列。求证:当a3是整数时,a3必为12的正约数。
(2)若数列
中的其他任何一项,求a1的取值范围
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com