0  423097  423105  423111  423115  423121  423123  423127  423133  423135  423141  423147  423151  423153  423157  423163  423165  423171  423175  423177  423181  423183  423187  423189  423191  423192  423193  423195  423196  423197  423199  423201  423205  423207  423211  423213  423217  423223  423225  423231  423235  423237  423241  423247  423253  423255  423261  423265  423267  423273  423277  423283  423291  447090 

7. (Ⅰ)证明  将△沿直线对折,得△,连

则△≌△.   ························································································· 1分

又由,得 .  ········································· 2分

. ··································································································· 3分

∴△≌△.   ···························································································· 4分

.····························································· 5分

∴在Rt△中,由勾股定理,

.即. ························································ 6分

(Ⅱ)关系式仍然成立.  ····························································· 7分

证明  将△沿直线对折,得△,连

则△≌△. ···················································· 8分

又由,得

.  ································································································ 9分

∴△≌△

. 

∴在Rt△中,由勾股定理,

.即.························································ 10分

试题详情

6. 解:(1)证明:

(2)①是;②是;③否.

②的证明:如图,

③的证明:如图,

.又

,即

试题详情

5. 解:⑴证明:∵AC平分∠MAN,∠MAN=120°,

∴∠CAB=∠CAD=60°,

∵∠ABC=∠ADC=90°,

∴∠ACB=∠ACD=30°,…………1分

∴AB=AD=AC,……………………2分

∴AB+AD=AC。……………………3分

⑵成立。……………………………r…4分

证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。

∵AC平分∠MAN,∴CE=CF.

∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,

∴∠CDE=∠ABC,………………………………………………………………5分

∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,……………………6分

∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,

∴AB+AD=AC……………………………………………………………………7分

证法二:如图,在AN上截取AG=AC,连接CG.

∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,…………5分

∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,

∴∠CBG=∠ADC,∴△CBG≌△CDA,……………………………………6分

∴BG=AD,

∴AB+AD=AB+BG=AG=AC,…………………………………………7分

⑶①;………………………………………………………………………8分

.………………………………………………………………………9分

证明:由⑵知,ED=BF,AE=AF,

在Rt△AFC中,,即,

,………………………………………………………………10分

∴AB+AD=AF+BF+AE-ED=AF+AE=2,…………11分

试题详情

4. 证明:(1)证明:方法一:在△ACD和△BCE中,

ACBC

DCA=∠ECB=90°,

DCEC, 

∴ △ACD≌△BCE(SAS). ………………2分

∴ ∠DAC=∠EBC.  ………………………3分

   ∵ ∠ADC=∠BDF, 

   ∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.

   ∴ ∠BFD=90°. 

AFBE.  …………………………………5分 

方法二:∵ ACBCDCEC

.即tan∠DAC=tan∠EBC. 

∴ ∠DAC=∠EBC.(下略)…………………3分

(2)AFBE.  …………………………………6分 

∵ ∠ABC=∠DEC=30°,∠ACB=∠DCE=90°,

=tan60°.  ……………………7分

∴ △DCA∽△ECB.  …………………………8分

∴ ∠DAC=∠EBC.  …………………………9分

∵ ∠ADC=∠BDF

∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°. 

∴ ∠BFD=90°. 

AFBE.   ……………………………………………………………………10分

试题详情

3. (1)证明:在ΔABC和ΔDCB中

∴ΔABC≌ΔDCB(SSS)

(2)等腰三角形。

试题详情

2. 解:(1)作图略;                      

(2)取点F和画AF正确(如图);

  添加的条件可以是:F是CE的中点;

  AF⊥CE;∠CAF=∠EAF等。(选一个即可)

试题详情

1. 证明:连结AB

在△ADB与△ACB中∴△ADB≌△ACB∴OC=OD.

试题详情

6.7. 全等三角形的对应角相等 

试题详情

1. (1)(2)(3)(5)  2. 3n+1  3. 120  4. 2,18  5. 正五边形

试题详情

1.A 2.D 3.C 4.B 5.B 6.D

试题详情


同步练习册答案