7. (Ⅰ)证明 将△
沿直线
对折,得△
,连
,
则△
≌△
. ························································································· 1分
有
,
,
,
.
又由
,得
. ········································· 2分
由
,
![]()
,
得
. ··································································································· 3分
又
,
∴△
≌△
. ···························································································· 4分
有
,
.
∴
.····························································· 5分
∴在Rt△
中,由勾股定理,
得
.即
. ························································ 6分
(Ⅱ)关系式
仍然成立. ····························································· 7分
证明 将△
沿直线
对折,得△
,连
,
则△
≌△
. ···················································· 8分
有
,
,
,
.
又由
,得
.
由
,
.
得
. ································································································ 9分
又
,
∴△
≌△
.
有
,
,
,
∴
.
∴在Rt△
中,由勾股定理,
得
.即
.························································ 10分
6. 解:(1)证明:
,
,
,
,
,
.
(2)①是;②是;③否.
②的证明:如图,
,
,
,
,
,
![]()
,
![]()
.
③的证明:如图,
,
,
,
.又
,
,
,即
.
5. 解:⑴证明:∵AC平分∠MAN,∠MAN=120°,
∴∠CAB=∠CAD=60°,
∵∠ABC=∠ADC=90°,
∴∠ACB=∠ACD=30°,…………1分
∴AB=AD=
AC,……………………2分
∴AB+AD=AC。……………………3分
⑵成立。……………………………r…4分
证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。
∵AC平分∠MAN,∴CE=CF.
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,………………………………………………………………5分
∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,……………………6分
∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,
∴AB+AD=AC……………………………………………………………………7分
证法二:如图,在AN上截取AG=AC,连接CG.
∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,…………5分
∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC,∴△CBG≌△CDA,……………………………………6分
∴BG=AD,
∴AB+AD=AB+BG=AG=AC,…………………………………………7分
⑶①
;………………………………………………………………………8分
②
.………………………………………………………………………9分
证明:由⑵知,ED=BF,AE=AF,
在Rt△AFC中,
,即
,
∴
,………………………………………………………………10分
∴AB+AD=AF+BF+AE-ED=AF+AE=2
,…………11分
4. 证明:(1)证明:方法一:在△ACD和△BCE中,
AC=BC,
∠DCA=∠ECB=90°,
DC=EC,
∴ △ACD≌△BCE(SAS). ………………2分
∴ ∠DAC=∠EBC. ………………………3分
∵ ∠ADC=∠BDF,
∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.
∴ ∠BFD=90°.
∴ AF⊥BE. …………………………………5分
方法二:∵ AC=BC,DC=EC,
∴
.即tan∠DAC=tan∠EBC.
∴ ∠DAC=∠EBC.(下略)…………………3分
(2)AF⊥BE. …………………………………6分
∵ ∠ABC=∠DEC=30°,∠ACB=∠DCE=90°,
∴
=tan60°. ……………………7分
∴ △DCA∽△ECB. …………………………8分
∴ ∠DAC=∠EBC. …………………………9分
∵ ∠ADC=∠BDF,
∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.
∴ ∠BFD=90°.
∴ AF⊥BE. ……………………………………………………………………10分
3. (1)证明:在ΔABC和ΔDCB中
![]()
∴ΔABC≌ΔDCB(SSS)
(2)等腰三角形。
2. 解:(1)作图略;
(2)取点F和画AF正确(如图);
添加的条件可以是:F是CE的中点;
AF⊥CE;∠CAF=∠EAF等。(选一个即可)
1. 证明:连结AB
在△ADB与△ACB中
∴△ADB≌△ACB∴OC=OD.
6.
或
或
或
7. 全等三角形的对应角相等
1. (1)(2)(3)(5) 2. 3n+1 3. 120 4. 2,18 5. 正五边形
1.A 2.D 3.C 4.B 5.B 6.D
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com