3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是( )
A.等边三角形 B.腰和底边不相等的等腰三角形
C.直角三角形 D.不等边三角形
2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )
A.①②③ B.①②④ C.①③ D.①②③④
1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于( )
A.60° B.90° C.120° D.150°
4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
典型例题
分析:由∠BDC=120°和∠EDF=60°得到∠BDE+∠CDF=60°,从而想到把这两个角拼在一起构造全等三角形,即延长AC至点P,使CP=BE,证明△BDE≌CDP,然后证明△DEF≌△DPF,得到EF=PF,从而把△AEF的周长转化为用△ABC的边长表示.
解:延长AC至点P,使CP=BE,连接PD.
∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∵BD=CD,∠BDC=120°
∴∠DBC=∠DCB=30° ∴∠EBD=∠DCF=90°
∴∠DCP=∠DBE=90°
在△BDE和△CDP中
∴△BDE≌△CDP(SAS)
∴DE=DP,∠BDE=∠CDP
∵∠BDC=120°,∠EDF=60°
∴∠BDE+∠CDF=60° ∴∠CDP+∠CDF=60°
∴∠EDF=∠PDF=60°
在△DEF≌△DPF中
∴△DEF≌△DPF(SAS) ∴EF=FP ∴EF=FC+BE
∴△AEF的周长=AE+EF+AF=AB+AC=2
练习题
3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.
2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°
1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.
2.等边三角形
知识要点
11.证明∠EAD=∠EDA,∠EBD=∠EDB分别得到AE=DE,BE=DE
10.证明∠D=∠BED
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com