精英家教网 > 初中数学 > 题目详情
4.如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.

(1)抛物线y=$\frac{1}{2}$x2对应的碟宽为4;抛物线y=4x2对应的碟宽为$\frac{1}{2}$;抛物线y=ax2(a>0)对应的碟宽为$\frac{2}{a}$;抛物线y=a(x-2)2+3(a>0)对应的碟宽$\frac{2}{a}$;
(2)若抛物线y=ax2-4ax-$\frac{5}{3}$(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线yn=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3,…),定义F1,F2,…..Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn-1的相似比为$\frac{1}{2}$,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn.则hn=$\frac{3}{2n-1}$,Fn的碟宽右端点横坐标为2+$\frac{3}{2n-1}$;F1,F2,….Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.

分析 (1)根据定义易算出含具体值的抛物线y=$\frac{1}{2}$x2,抛物线y=4x2的碟宽,且都利用端点(第一象限)横纵坐标相等.推广至含字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x-2)2+3(a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a有关.
(2)根据(1)的结论,根据碟宽易得a的值.
(3)①由y1,易推y2.②结合画图,易知h1,h2,h3,…,hn-1,hn都在直线x=2上,但证明需要有一般推广,可以考虑hn∥hn-1,且都过Fn-1的碟宽中点,进而可得.另画图时易知碟宽有规律递减,所以推理也可得右端点的特点.对于“F1,F2,…,Fn的碟宽右端点是否在一条直线上?”,如果写出所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反则结论成立.求直线方程只需考虑特殊点即可.

解答 解:(1)4;$\frac{1}{2}$;$\frac{2}{a}$;$\frac{2}{a}$.
分析如下:
∵a>0,
∴y=ax2的图象大致如下:

其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.
∵△OAB为等腰直角三角形,AB∥x轴,
∴OC⊥AB,
∴∠AOC=∠BOC=$\frac{1}{2}$∠AOB=$\frac{1}{2}$•90°=45°,
∴△ACO与△BCO亦为等腰直角三角形,
∴AC=OC=BC,
∴xA=yA,xB=yB,代入y=ax2
∴A(-$\frac{1}{a}$,$\frac{1}{a}$),B($\frac{1}{a}$,$\frac{1}{a}$),C(0,$\frac{1}{a}$),
∴AB=$\frac{2}{a}$,OC=$\frac{1}{a}$,
即y=ax2的碟宽为$\frac{2}{a}$.
①抛物线y=$\frac{1}{2}$x2对应的a=$\frac{1}{2}$,得碟宽$\frac{2}{a}$为4;
②抛物线y=4x2对应的a=4,得碟宽为$\frac{2}{a}$为$\frac{1}{2}$;
③抛物线y=ax2(a>0),碟宽为$\frac{2}{a}$;
④抛物线y=a(x-2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,
∵平移不改变形状、大小、方向,
∴抛物线y=a(x-2)2+3(a>0)的准碟形≌抛物线y=ax2的准碟,
∵抛物线y=ax2(a>0),碟宽为$\frac{2}{a}$,
∴抛物线y=a(x-2)2+3(a>0),碟宽为$\frac{2}{a}$.

(2)∵y=ax2-4ax-$\frac{5}{3}$=a(x-2)2-(4a+$\frac{5}{3}$),
∴同(1),其碟宽为$\frac{2}{a}$,
∵y=ax2-4ax-$\frac{5}{3}$的碟宽为6,
∴$\frac{2}{a}$=6,
解得 a=$\frac{1}{3}$,
∴y=$\frac{1}{3}$(x-2)2-3.

(3)①∵F1的碟宽:F2的碟宽=2:1,
∴$\frac{2}{{a}_{1}}$=$\frac{4}{{a}_{2}}$,
∵a1=$\frac{1}{3}$,
∴a2=$\frac{2}{3}$.
∵y=$\frac{1}{3}$(x-2)2-3的碟宽AB在x轴上(A在B左边),
∴A(-1,0),B(5,0),
∴F2的碟顶坐标为(2,0),
∴y2=$\frac{2}{3}$(x-2)2
②∵Fn的准碟形为等腰直角三角形,
∴Fn的碟宽为2hn
∵2hn:2hn-1=1:2,
∴hn=$\frac{1}{2}$hn-1=($\frac{1}{2}$)2hn-2=($\frac{1}{2}$)3hn-3=…=($\frac{1}{2}$)n-1h1
∵h1=3,
∴hn=$\frac{3}{2n-1}$.
∵hn∥hn-1,且都过Fn-1的碟宽中点,
∴h1,h2,h3,…,hn-1,hn都在一条直线上,
∵h1在直线x=2上,
∴h1,h2,h3,…,hn-1,hn都在直线x=2上,
∴Fn的碟宽右端点横坐标为2+$\frac{3}{2n-1}$.
另,F1,F2,…,Fn的碟宽右端点在一条直线上,直线为y=-x+5.
分析如下:
考虑Fn-2,Fn-1,Fn情形,关系如图2,

Fn-2,Fn-1,Fn的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.
∵AB∥x轴,DE∥x轴,GH∥x轴,
∴AB∥DE∥GH,
∴GH平行相等于FE,DE平行相等于CB,
∴四边形GFEH,四边形DCBE都为平行四边形,
∴HE∥GF,EB∥DC,
∵∠GFI=$\frac{1}{2}$•∠GFH=$\frac{1}{2}$•∠DCE=∠DCF,
∴GF∥DC,
∴HE∥EB,
∵HE,EB都过E点,
∴HE,EB在一条直线上,
∴Fn-2,Fn-1,Fn的碟宽的右端点是在一条直线,
∴F1,F2,…,Fn的碟宽的右端点是在一条直线.
∵F1:y1=$\frac{1}{3}$(x-2)2-3准碟形右端点坐标为(5,0),
  F2:y2=$\frac{2}{3}$(x-2)2准碟形右端点坐标为(2+$\frac{3}{2}$,$\frac{3}{2}$),
∴待定系数可得过两点的直线为y=-x+5,
∴F1,F2,…,Fn的碟宽的右端点是在直线y=-x+5上.
故答案是:(1)4、$\frac{1}{2}$、$\frac{2}{a}$、$\frac{2}{a}$;(2)$\frac{1}{3}$;(3)①y2=$\frac{2}{3}$(x-2)2;②$\frac{3}{2n-1}$,2+$\frac{3}{2n-1}$,y=-x+5.

点评 本题考查了二次函数综合题,学生对新知识的学习、理解与应用能力.题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,多点共线证明等知识,综合难度较高,学生清晰理解有一定困难.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.已知a2=3,则(a32=27,a8=81.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小李和小张决定把省下的零用钱存起来,这个月小李存了168元,小张存了85元.从下个月开始小李每月存16元,小张每月存25元,问几个月后小张的存款数能超过小李?(用不等式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.将下列二次根式中根号外的因数或因式移至根号内.
(1)3$\sqrt{3}$;
(2)x$\sqrt{-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.某种家电每台的成本为1440元,原定价为x元,销售旺季过后,商店按原定价的8折出售,打折后每台售价为0.8x元,销售一台仍可获利润0.8x-1440元(成本+利润=出售价)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,四边形ABCD中,AB∥CD,点E是边AD上的点,BE平分∠ABC,CE平分∠BCD,有下列结论:①AD=AB+CD,②E为AD的中点,③BC=AB+CD,④BE⊥CE,其中正确的有②③④.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,如果$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.那么下列选项中,正确的是(  )
A.$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)B.$\overrightarrow{OA}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)C.$\overrightarrow{OD}$=$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$)D.$\overrightarrow{BD}$=($\overrightarrow{a}$-$\overrightarrow{b}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若四边形ABCD的对角线交于点O,且有$\overrightarrow{AB}=2\overrightarrow{DC}$,则以下结论正确的是(  )
A.$\overrightarrow{AO}=2\overrightarrow{OC}$B.$|\overrightarrow{AC}|=|\overrightarrow{BD}|$C.$\overrightarrow{AC}=\overrightarrow{BD}$D.$\overrightarrow{DO}=2\overrightarrow{OB}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.边长分别为a和2a的两个正方形按如图的样式摆放并连线,则图中阴影部分的面积为(  )
A.3a2B.$\frac{7}{4}{a}^{2}$C.2a2D.$\frac{3}{2}{a}^{2}$

查看答案和解析>>

同步练习册答案