精英家教网 > 初中数学 > 题目详情
8.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=25度.

分析 根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.

解答 解:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=$\frac{1}{2}$BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO=$\frac{1}{2}∠DAB$=25°,
故答案为:25.

点评 本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为189m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,E为正方形ABCD边CD上一点,DE=3,CE=1,F为直线BC上一点,直线DF与直线AE交于G,且DF=AE,则DG=$\frac{12}{5}$或$\frac{60}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:△ABC内接于⊙O,过点B作直线EF,AB为非直径的弦,且EF是⊙O的切线
(1)求证:∠CBF=∠A;
(2)若∠A=30°,BC=2,连接OC并延长交EF于点M,求由弧BC、线段BM和CM所围成的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,将一矩形OABC放在直角坐标系中,O为坐标原点,点A在y轴正半轴上,点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=$\frac{k}{x}$(x>0)的图象与边BC交与点F.
(1)若△OAE、△OCF的面积分别为S1、S2,且S1+S2=2,求k的值;
(2)在(1)的结论下,当OA=2,OC=4时,求三角形OEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,点F在?ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.
(1)求证:四边形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE=$\frac{1}{2}$,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知二次函数y=x2-2x+c(c为常数).
(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c的取值范围;
(2)已知该二次函数的图象与x轴交于点A(-1,0)和点B,与y轴交于点C,顶点为D,若存在点P(m,0)(m>3)使得△CDP与△BDP面积相等,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,平面直角坐标系中,已知O为坐标原点,A(3,0),B(0,4).将Rt△AOB绕点A顺时针旋转得到Rt△ACD,旋转后点D恰好落在AB边上时,则D点的坐标为($\frac{6}{5}$,$\frac{12}{5}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知反比例函数y=$\frac{2}{x}$,在下列结论中,不正确的是(  )
A.图象必经过点(1,2)B.y随x的增大而减少
C.图象在第一、三象限D.若x>1,则y<2

查看答案和解析>>

同步练习册答案