【题目】椭圆
上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=
,
,
,则椭圆的离心率的取值范围为_______.
【答案】![]()
【解析】
设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用a和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出
即离心率e,进而根据α的范围确定e的范围.
∵B和A关于原点对称,∴B也在椭圆上,设左焦点为F′
根据椭圆定义:|AF|+|AF′|=2a
又∵|BF|=|AF′|∴|AF|+|BF|=2a …①
O是Rt△ABF的斜边中点,∴|AB|=2c
又|AF|=2csinα …②
|BF|=2ccosα …③
②③代入①2csinα+2ccosα=2a
∴
=
即e=
=
∵a∈[
,
],∴
≤α+
≤
∴
≤sin(α+
)≤1 ∴
≤e≤![]()
故答案为:[
,
]
科目:高中数学 来源: 题型:
【题目】某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收.园林公司进行如下设计,安排圆内接四边形
作为绿化区域,其余作为市民活动区域.其中
区域种植花木后出售,
区域种植草皮后出售,已知草皮每平方米售价为
元,花木每平方米的售价是草皮每平方米售价的三倍. 若
km ,
km
(1)若
km ,求绿化区域的面积;
(2)设
,当
取何值时,园林公司的总销售金额最大.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
过点
,且圆心在直线
上.
(1)求圆
的方程;
(2)平面上有两点
,点
是圆
上的动点,求
的最小值;
(3)若
是
轴上的动点,
分别切圆
于
两点,试问:直线
是否恒过定点?若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是由两个全等的菱形
和
组成的空间图形,
,∠BAF=∠ECD=60°.
![]()
(1)求证:
;
(2)如果二面角B-EF-D的平面角为60°,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列{an},记T={x|x=aj﹣ai,i<j},若数列{an}满足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*,m>k),必有am+1﹣ak+1=t”,则称数列具有性质P(t).
(1)若数列{an}满足
,判断数列{an}是否具有性质P(2)?是否具有性质P(4)?说明理由;
(2)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(3)已知{bn}是各项均为正整数的数列,且{bn}既具有性质P(2),又具有性质P(5),求证:存在正整数N,使得aN,aN+1,aN+2,…,aN+K,…是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点
为
所在的平面内,给出下列关系式:
①
;
②
;
③
.
则点
依次为
的( )
A.内心、重心、垂心B.重心、内心、垂心C.重心、内心、外心D.外心、垂心、重心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,和两点
,给出如下结论其中真命题的序号是________
①当
变化时,
与
分别经过定点
和
;
②不论
为何值时,
与
都互相垂直;
③如果
与
交于点
,则
的最大值是2;
④
为直线
上的点,则
的最小值是
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com