0  1262  1270  1276  1280  1286  1288  1292  1298  1300  1306  1312  1316  1318  1322  1328  1330  1336  1340  1342  1346  1348  1352  1354  1356  1357  1358  1360  1361  1362  1364  1366  1370  1372  1376  1378  1382  1388  1390  1396  1400  1402  1406  1412  1418  1420  1426  1430  1432  1438  1442  1448  1456  3002 

绝密★启用前                                                        试卷类型:A

2009年山东省滨州市高考模拟考试

                    理科综合试题                2009.3

     本试卷分第Ⅰ卷和第Ⅱ卷两部分,共14页。满分240分。考试用时150分钟。考试结束后,将答题纸和答题卡一并交回。答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题纸和答题卡规定的位置。

第I卷(必做题  共88分)

注意事项:

    1.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不涂在答题卡上,只答在试卷上不得分。

2.第I卷共22小题,每小题4分,共88分。

以下数据可供答题时参考:

相对原子质量:H:1  C:12  O:16  Na:23   AI:27   CI:35.5  Fe:56   Cu:64

试题详情

2009年高考数学难点突破专题辅导十八

难点18  不等式的证明策略

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.

●难点磁场

(★★★★)已知a>0,b>0,且a+b=1.

求证:(a+6ec8aac122bd4f6e)(b+6ec8aac122bd4f6e)≥6ec8aac122bd4f6e.

●案例探究

[例1]证明不等式6ec8aac122bd4f6e(nN*)

命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.

知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.

错解分析:此题易出现下列放缩错误:

6ec8aac122bd4f6e

这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.

技巧与方法:本题证法一采用数学归纳法从n=kn=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.

证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立;

(2)假设n=k(k≥1)时,不等式成立,即1+6ec8aac122bd4f6e<26ec8aac122bd4f6e

6ec8aac122bd4f6e

∴当n=k+1时,不等式成立.

综合(1)、(2)得:当nN*时,都有1+6ec8aac122bd4f6e<26ec8aac122bd4f6e.

另从kk+1时的证明还有下列证法:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

证法二:对任意kN*,都有:

6ec8aac122bd4f6e

证法三:设f(n)=6ec8aac122bd4f6e

那么对任意kN?* 都有:

6ec8aac122bd4f6e

f(k+1)>f(k)

因此,对任意nN* 都有f(n)>f(n-1)>…>f(1)=1>0,

6ec8aac122bd4f6e

[例2]求使6ec8aac122bd4f6ea6ec8aac122bd4f6e(x>0,y>0)恒成立的a的最小值.

命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.

知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.

错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将xy与cosθ、sinθ来对应进行换元,即令6ec8aac122bd4f6e=cosθ6ec8aac122bd4f6e=sinθ(0<θ6ec8aac122bd4f6e),这样也得a≥sinθ+cosθ,但是这种换元是错误的.其原因是:(1)缩小了xy的范围;(2)这样换元相当于本题又增加了“xy=1”这样一个条件,显然这是不对的.

技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,af(x),则amin=f(x)max;若 af(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.

解法一:由于a的值为正数,将已知不等式两边平方,得:

x+y+26ec8aac122bd4f6ea2(x+y),即26ec8aac122bd4f6e≤(a2-1)(x+y),                                                     ①

xy>0,∴x+y≥26ec8aac122bd4f6e,                                                                                  ②

当且仅当x=y时,②中有等号成立.

比较①、②得a的最小值满足a2-1=1,

a2=2,a=6ec8aac122bd4f6e (因a>0),∴a的最小值是6ec8aac122bd4f6e.

解法二:设6ec8aac122bd4f6e.

x>0,y>0,∴x+y≥26ec8aac122bd4f6e (当x=y时“=”成立),

6ec8aac122bd4f6e≤1,6ec8aac122bd4f6e的最大值是1.

从而可知,u的最大值为6ec8aac122bd4f6e

又由已知,得au,∴a的最小值为6ec8aac122bd4f6e.

解法三:∵y>0,

∴原不等式可化为6ec8aac122bd4f6e+1≤a6ec8aac122bd4f6e

6ec8aac122bd4f6e=tanθθ∈(0,6ec8aac122bd4f6e).

∴tanθ+1≤a6ec8aac122bd4f6e;即tanθ+1≤asecθ

a≥sinθ+cosθ=6ec8aac122bd4f6esin(θ+6ec8aac122bd4f6e),                                                                        ③

又∵sin(θ+6ec8aac122bd4f6e)的最大值为1(此时θ=6ec8aac122bd4f6e).

由③式可知a的最小值为6ec8aac122bd4f6e.

●锦囊妙计

1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.

(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.

2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.

证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十七

难点17  三角形中的三角函数式

三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.

●难点磁场

(★★★★★)已知△ABC的三个内角ABC满足A+C=2B.6ec8aac122bd4f6e,求cos6ec8aac122bd4f6e的值.

●案例探究

6ec8aac122bd4f6e[例1]在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为60°的B处,到11时10分又测得该船在岛北60°西、俯角为30°的C处。

(1)求船的航行速度是每小时多少千米;

(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?

命题意图:本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力.

知识依托:主要利用三角形的三角关系,关键找准方位角,合理利用边角关系.

错解分析:考生对方位角识别不准,计算易出错.

技巧与方法:主要依据三角形中的边角关系并且运用正弦定理来解决问题.

解:(1)在Rt△PAB中,∠APB=60° PA=1,∴AB=6ec8aac122bd4f6e (千米)

在Rt△PAC中,∠APC=30°,∴AC=6ec8aac122bd4f6e (千米)

在△ACB中,∠CAB=30°+60°=90°

6ec8aac122bd4f6e

(2)∠DAC=90°-60°=30°

sinDCA=sin(180°-∠ACB)=sinACB=6ec8aac122bd4f6e

sinCDA=sin(∠ACB-30°)=sinACB?cos30°-cosACB?sin30°6ec8aac122bd4f6e.

6ec8aac122bd4f6e

在△ACD中,据正弦定理得6ec8aac122bd4f6e

6ec8aac122bd4f6e

答:此时船距岛A6ec8aac122bd4f6e千米.

[例2]已知△ABC的三内角ABC满足A+C=2B,设x=cos6ec8aac122bd4f6ef(x)=cosB(6ec8aac122bd4f6e).

(1)试求函数f(x)的解析式及其定义域;

(2)判断其单调性,并加以证明;

(3)求这个函数的值域.

命题意图:本题主要考查考生运用三角知识解决综合问题的能力,并且考查考生对基础知识的灵活运用的程度和考生的运算能力,属★★★★级题目.

知识依托:主要依据三角函数的有关公式和性质以及函数的有关性质去解决问题.

错解分析:考生对三角函数中有关公式的灵活运用是难点,并且不易想到运用函数的单调性去求函数的值域问题.

技巧与方法:本题的关键是运用三角函数的有关公式求出f(x)的解析式,公式主要是和差化积和积化和差公式.在求定义域时要注意|6ec8aac122bd4f6e|的范围.

解:(1)∵A+C=2B,∴B=60°,A+C=120°

6ec8aac122bd4f6e

∵0°≤|6ec8aac122bd4f6e|<60°,∴x=cos6ec8aac122bd4f6e∈(6ec8aac122bd4f6e,16ec8aac122bd4f6e

又4x2-3≠0,∴x6ec8aac122bd4f6e,∴定义域为(6ec8aac122bd4f6e6ec8aac122bd4f6e)∪(6ec8aac122bd4f6e,1].

(2)设x1x2,∴f(x2)-f(x1)=6ec8aac122bd4f6e

=6ec8aac122bd4f6e,若x1x2∈(6ec8aac122bd4f6e),则4x12-3<0,4x22-3<0,4x1x2+3>0,x1x2<0,∴f(x2)-f(x1)<0

f(x2)<f(x1),若x1x2∈(6ec8aac122bd4f6e,1],则4x12-3>0.

4x22-3>0,4x1x2+3>0,x1x2<0,∴f(x2)-f(x1)<0.

f(x2)<f(x1),∴f(x)在(6ec8aac122bd4f6e,6ec8aac122bd4f6e)和(6ec8aac122bd4f6e,16ec8aac122bd4f6e上都是减函数.

(3)由(2)知,f(x)<f(6ec8aac122bd4f6e)=-6ec8aac122bd4f6ef(x)≥f(1)=2.

f(x)的值域为(-∞,-6ec8aac122bd4f6e)∪[2,+∞6ec8aac122bd4f6e.

●锦囊妙计

本难点所涉及的问题以及解决的方法主要有:

(1)运用方程观点结合恒等变形方法巧解三角形;

(2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十六

难点16  三角函数式的化简与求值

三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.

●难点磁场

(★★★★★)已知6ec8aac122bd4f6eβα6ec8aac122bd4f6e,cos(αβ)=6ec8aac122bd4f6e,sin(α+β)=-6ec8aac122bd4f6e,求sin2α的值_________.

●案例探究

[例1]不查表求sin220°+cos280°+6ec8aac122bd4f6ecos20°cos80°的值.

命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.

知识依托:熟知三角公式并能灵活应用.

错解分析:公式不熟,计算易出错.

技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.

解法一:sin220°+cos280°+6ec8aac122bd4f6esin220°cos80°

=6ec8aac122bd4f6e (1-cos40°)+6ec8aac122bd4f6e (1+cos160°)+ 6ec8aac122bd4f6esin20°cos80°

=1-6ec8aac122bd4f6ecos40°+6ec8aac122bd4f6ecos160°+6ec8aac122bd4f6esin20°cos(60°+20°)

=1-6ec8aac122bd4f6ecos40°+6ec8aac122bd4f6e (cos120°cos40°-sin120°sin40°)+6ec8aac122bd4f6esin20°(cos60°cos20°-sin60°sin20°)

=1-6ec8aac122bd4f6ecos40°-6ec8aac122bd4f6ecos40°-6ec8aac122bd4f6esin40°+6ec8aac122bd4f6esin40°-6ec8aac122bd4f6esin220°

=1-6ec8aac122bd4f6ecos40°-6ec8aac122bd4f6e(1-cos40°)= 6ec8aac122bd4f6e

解法二:设x=sin220°+cos280°+6ec8aac122bd4f6esin20°cos80°

y=cos220°+sin280°-6ec8aac122bd4f6ecos20°sin80°,则

x+y=1+1-6ec8aac122bd4f6esin60°=6ec8aac122bd4f6exy=-cos40°+cos160°+6ec8aac122bd4f6esin100°

=-2sin100°sin60°+6ec8aac122bd4f6esin100°=0

x=y=6ec8aac122bd4f6e,即x=sin220°+cos280°+6ec8aac122bd4f6esin20°cos80°=6ec8aac122bd4f6e.

[例2]设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=6ec8aac122bd4f6ea值,并对此时的a值求y的最大值.

命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目

知识依托:二次函数在给定区间上的最值问题.

错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.

技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.

解:由y=2(cosx6ec8aac122bd4f6e)26ec8aac122bd4f6e及cosx∈[-1,1]得:

f(a)6ec8aac122bd4f6e

f(a)=6ec8aac122bd4f6e,∴1-4a=6ec8aac122bd4f6e6ec8aac122bd4f6ea=6ec8aac122bd4f6e6ec8aac122bd4f6e[2,+∞6ec8aac122bd4f6e

故-6ec8aac122bd4f6e2a-1=6ec8aac122bd4f6e,解得:a=-1,此时,

y=2(cosx+6ec8aac122bd4f6e)2+6ec8aac122bd4f6e,当cosx=1时,即x=2kπkZymax=5.

[例3]已知函数f(x)=2cosxsin(x+6ec8aac122bd4f6e)-6ec8aac122bd4f6esin2x+sinxcosx

(1)求函数f(x)的最小正周期;

(2)求f(x)的最小值及取得最小值时相应的x的值;

(3)若当x∈[6ec8aac122bd4f6e6ec8aac122bd4f6e]时,f(x)的反函数为f1(x),求f-1(1)的值.

命题意图:本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力,属★★★★★级题目.

知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.

错解分析:在求f-1(1)的值时易走弯路.

技巧与方法:等价转化,逆向思维.

解:(1)f(x)=2cosxsin(x+6ec8aac122bd4f6e)-6ec8aac122bd4f6esin2x+sinxcosx

=2cosx(sinxcos6ec8aac122bd4f6e+cosxsin6ec8aac122bd4f6e)-6ec8aac122bd4f6esin2x+sinxcosx

=2sinxcosx+6ec8aac122bd4f6ecos2x=2sin(2x+6ec8aac122bd4f6e)

f(x)的最小正周期T=π

(2)当2x+6ec8aac122bd4f6e=2kπ6ec8aac122bd4f6e,即x=kπ6ec8aac122bd4f6e (kZ)时,f(x)取得最小值-2.

(3)令2sin(2x+6ec8aac122bd4f6e)=1,又x∈[6ec8aac122bd4f6e],

∴2x+6ec8aac122bd4f6e∈[6ec8aac122bd4f6e,6ec8aac122bd4f6e],∴2x+6ec8aac122bd4f6e=6ec8aac122bd4f6e,则

x=6ec8aac122bd4f6e,故f-1(1)= 6ec8aac122bd4f6e.

●锦囊妙计

本难点所涉及的问题以及解决的方法主要有:

1.求值问题的基本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或值域,5°化简求值.

2.技巧与方法:

1°要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式.

2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.

3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法.

4°求最值问题,常用配方法、换元法来解决.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十五

难点15  三角函数的图象和性质

三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用.

●难点磁场

(★★★★)已知αβ为锐角,且x(α+β6ec8aac122bd4f6e)>0,试证不等式f(x)=6ec8aac122bd4f6ex<2对一切非零实数都成立.

●案例探究

[例1]设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θR,已知z1=2z2,求λ的取值范围.

命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目.

知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决.

错解分析:考生不易运用等价转化的思想方法来解决问题.

技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题.

解法一:∵z1=2z2

m+(2-m2)i=2cosθ+(2λ+2sinθ)i,∴6ec8aac122bd4f6e

λ=1-2cos2θ-sinθ=2sin2θ-sinθ-1=2(sinθ6ec8aac122bd4f6e)26ec8aac122bd4f6e.

当sinθ=6ec8aac122bd4f6eλ取最小值-6ec8aac122bd4f6e,当sinθ=-1时,λ取最大值2.

解法二:∵z1=2z2  ∴6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e=1.

m4-(3-4λ)m2+4λ2-8λ=0,设t=m2,则0≤t≤4,

f(t)=t2-(3-4λ)t+4λ2-8λ,则6ec8aac122bd4f6ef(0)?f(4)≤0

6ec8aac122bd4f6e

∴-6ec8aac122bd4f6eλ≤0或0≤λ≤2.

λ的取值范围是[-6ec8aac122bd4f6e,2].

6ec8aac122bd4f6e[例2]如右图,一滑雪运动员自h=50m高处A点滑至O点,由于运动员的技巧(不计阻力),在O点保持速率v0不为,并以倾角θ起跳,落至B点,令OB=L,试问,α=30°时,L的最大值为多少?当L取最大值时,θ为多大?

命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目.

知识依托:主要依据三角函数知识来解决实际问题.

错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活.

技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题.

解:由已知条件列出从O点飞出后的运动方程:

6ec8aac122bd4f6e6ec8aac122bd4f6e

由①②整理得:v0cosθ=6ec8aac122bd4f6e

v02+gLsinα=6ec8aac122bd4f6eg2t2+6ec8aac122bd4f6e6ec8aac122bd4f6e=gL

运动员从A点滑至O点,机械守恒有:mgh=6ec8aac122bd4f6emv02,

v02=2gh,∴L6ec8aac122bd4f6e=200(m)

Lmax=200(m),又6ec8aac122bd4f6eg2t2=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

得cosθ=cosα,∴θ=α=30°∴L最大值为200米,当L最大时,起跳仰角为30°.

[例3]如下图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.

(1)求这段时间的最大温差.

(2)写出这段曲线的函数解析式.

6ec8aac122bd4f6e

命题意图:本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则.属★★★★级题目.

知识依托:依据图象正确写出解析式.

错解分析:不易准确判断所给图象所属的三角函数式的各个特定系数和字母.

技巧与方法:数形结合的思想,以及运用待定系数法确定函数的解析式.

解:(1)由图示,这段时间的最大温差是30-10=20(℃);

(2)图中从6时到14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象.

6ec8aac122bd4f6e=14-6,解得ω=6ec8aac122bd4f6e,由图示A=6ec8aac122bd4f6e(30-10)=10,b=6ec8aac122bd4f6e(30+10)=20,这时y=10sin(6ec8aac122bd4f6ex+φ)+20,将x=6,y=10代入上式可取φ=6ec8aac122bd4f6eπ.综上所求的解析式为y=10sin(6ec8aac122bd4f6ex+

6ec8aac122bd4f6eπ)+20,x∈[6,14].

●锦囊妙计

本难点所涉及的问题及解决的方法主要有:

1.考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用.

2.三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.

3.三角函数与实际问题的综合应用.

此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十四

难点14  数列综合应用问题

纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.

●难点磁场

(★★★★★)已知二次函数y=f(x)在x=6ec8aac122bd4f6e处取得最小值-6ec8aac122bd4f6e (t>0),f(1)=0.

(1)求y=f(x)的表达式;

(2)若任意实数x都满足等式f(x)?g(x)+anx+bn=xn+1g(x)]为多项式,nN*),试用t表示anbn

(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

●案例探究

[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少6ec8aac122bd4f6e,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加6ec8aac122bd4f6e.

(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;

(2)至少经过几年,旅游业的总收入才能超过总投入?

命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.

知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.

错解分析:(1)问anbn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.

技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.

解:(1)第1年投入为800万元,第2年投入为800×(1-6ec8aac122bd4f6e)万元,…第n年投入为800×(1-6ec8aac122bd4f6e)n1万元,所以,n年内的总投入为

an=800+800×(1-6ec8aac122bd4f6e)+…+800×(1-6ec8aac122bd4f6e)n1=6ec8aac122bd4f6e800×(1-6ec8aac122bd4f6e)k1

=4000×[1-(6ec8aac122bd4f6e)n

第1年旅游业收入为400万元,第2年旅游业收入为400×(1+6ec8aac122bd4f6e),…,第n年旅游业收入400×(1+6ec8aac122bd4f6e)n1万元.所以,n年内的旅游业总收入为

bn=400+400×(1+6ec8aac122bd4f6e)+…+400×(1+6ec8aac122bd4f6e)k1=6ec8aac122bd4f6e400×(6ec8aac122bd4f6e)k1.

=1600×[(6ec8aac122bd4f6e)n-1]

(2)设至少经过n年旅游业的总收入才能超过总投入,由此bnan>0,即:

1600×[(6ec8aac122bd4f6e)n-1]-4000×[1-(6ec8aac122bd4f6e)n]>0,令x=(6ec8aac122bd4f6e)n,代入上式得:5x2-7x+2>0.解此不等式,得x6ec8aac122bd4f6e,或x>1(舍去).即(6ec8aac122bd4f6e)n6ec8aac122bd4f6e,由此得n≥5.

∴至少经过5年,旅游业的总收入才能超过总投入.

[例2]已知Sn=1+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e,(nN*)设f(n)=S2n+1Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式:f(n)>[logm(m-1)]26ec8aac122bd4f6e[log(m1)m2恒成立.

命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.

知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.

错解分析:本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理.

技巧与方法:解决本题的关键是把f(n)(nN*)看作是n的函数,此时不等式的恒成立就转化为:函数f(n)的最小值大于[logm(m-1)]26ec8aac122bd4f6e[log(m1)m2.

解:∵Sn=1+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e.(nN*)

6ec8aac122bd4f6e

f(n+1)>f(n)

f(n)是关于n的增函数

f(n) min=f(2)=6ec8aac122bd4f6e

∴要使一切大于1的自然数n,不等式

f(n)>[logm(m-1)]26ec8aac122bd4f6e[log(m1)m2恒成立

只要6ec8aac122bd4f6e>[logm(m-1)]26ec8aac122bd4f6e[log(m1)m2成立即可

6ec8aac122bd4f6em>1且m≠2

此时设[logm(m-1)]2=t  则t>0

于是6ec8aac122bd4f6e解得0<t<1

 由此得0<[logm(m-1)]2<1

 解得m6ec8aac122bd4f6em≠2.

●锦囊妙计

1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.

2.纵观近几年高考应用题看,解决一个应用题,重点过三关:

(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.

(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.

(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十三

难点13  数列的通项与求和

数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.

●难点磁场

(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数nan与2的等差中项等于Sn与2的等比中项.

(1)写出数列{an}的前3项.

(2)求数列{an}的通项公式(写出推证过程)

(3)令bn=6ec8aac122bd4f6e(nN*),求6ec8aac122bd4f6e (b1+b2+b3+…+bnn).

●案例探究

[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(qRq≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

(1)求数列{an}和{bn}的通项公式;

(2)设数列{cn}的前n项和为Sn,对一切nN*,都有6ec8aac122bd4f6e=an+1成立,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.

知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.

错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1b1dq,计算不准易出错;(2)问中对条件的正确认识和转化是关键.

技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.

解:(1)∵a1=f(d-1)=(d-2)2a3=f(d+1)=d2

a3a1=d2-(d-2)2=2d

d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2b3=f(q-1)=(q-2)2

6ec8aac122bd4f6e=q2,由qR,且q≠1,得q=-2,

bn=b?qn1=4?(-2)n1

(2)令6ec8aac122bd4f6e=dn,则d1+d2+…+dn=an+1,(nN*),

dn=an+1an=2,

6ec8aac122bd4f6e=2,即cn=2?bn=8?(-2)n1;∴Sn=6ec8aac122bd4f6e[1-(-2)n].

6ec8aac122bd4f6e

[例2]设An为数列{an}的前n项和,An=6ec8aac122bd4f6e (an-1),数列{bn}的通项公式为bn=4n+3;

(1)求数列{an}的通项公式;

(2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明:数列{dn}的通项公式为dn=32n+1;

(3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和;Dn为数列{dn}的前n项和,Tn=BrDn,求6ec8aac122bd4f6e6ec8aac122bd4f6e.

命题意图:本题考查数列的通项公式及前n项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力.

知识依托:利用项与和的关系求an是本题的先决;(2)问中探寻{an}与{bn}的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点.

错解分析:待证通项dn=32n+1an的共同点易被忽视而寸步难行;注意不到rn的关系,使Tn中既含有n,又含有r,会使所求的极限模糊不清.

技巧与方法:(1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出nr的关系,正确表示Br,问题便可迎刃而解.

解:(1)由An=6ec8aac122bd4f6e(an-1),可知An+1=6ec8aac122bd4f6e(an+1-1),

an+1an=6ec8aac122bd4f6e (an+1an),即6ec8aac122bd4f6e=3,而a1=A1=6ec8aac122bd4f6e (a1-1),得a1=3,所以数列是以3为首项,公比为3的等比数列,数列{an}的通项公式an=3n.

(2)∵32n+1=3?32n=3?(4-1)2n=3?[42n+C6ec8aac122bd4f6e?42n1(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n]=4n+3,

∴32n+1∈{bn}.而数32n=(4-1)2n=42n+C6ec8aac122bd4f6e?42n1?(-1)+…+C6ec8aac122bd4f6e?4?(-1)+(-1)2n=(4k+1),

∴32n6ec8aac122bd4f6e{bn},而数列{an}={a2n+1}∪{a2n},∴dn=32n+1.

(3)由32n+1=4?r+3,可知r=6ec8aac122bd4f6e

Br=6ec8aac122bd4f6e

6ec8aac122bd4f6e

●锦囊妙计

1.数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同.因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.

2.数列{an}前n 项和Sn与通项an的关系式:an=6ec8aac122bd4f6e

3.求通项常用方法

①作新数列法.作等差数列与等比数列.

②累差叠加法.最基本形式是:an=(anan1+(an1+an2)+…+(a2a1)+a1.

③归纳、猜想法.

4.数列前n项和常用求法

①重要公式

1+2+…+n=6ec8aac122bd4f6en(n+1)

12+22+…+n2=6ec8aac122bd4f6en(n+1)(2n+1)

13+23+…+n3=(1+2+…+n)2=6ec8aac122bd4f6en2(n+1)2

②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn.

③裂项求和:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项.应掌握以下常见的裂项:

6ec8aac122bd4f6e

④错项相消法

⑤并项求和法

数列通项与和的方法多种多样,要视具体情形选用合适方法.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十二

难点12  等差数列、等比数列的性质运用

等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容.

●难点磁场

(★★★★★)等差数列{an}的前n项的和为30,前2m项的和为100,求它的前3m项的和为_________.

●案例探究

[例1]已知函数f(x)=6ec8aac122bd4f6e (x<-2).

(1)求f(x)的反函数f-1(x);

(2)设a1=1,6ec8aac122bd4f6e =-f-1(an)(nN*),求an;

(3)设Sn=a12+a22+…+an2,bn=Sn+1Sn是否存在最小正整数m,使得对任意nN*,有bn<6ec8aac122bd4f6e成立?若存在,求出m的值;若不存在,说明理由.

命题意图:本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力,属★★★★★级题目.

知识依托:本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题.

错解分析:本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{6ec8aac122bd4f6e}为桥梁求an,不易突破.

技巧与方法:(2)问由式子6ec8aac122bd4f6e6ec8aac122bd4f6e=4,构造等差数列{6ec8aac122bd4f6e},从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想.

解:(1)设y=6ec8aac122bd4f6e,∵x<-2,∴x=-6ec8aac122bd4f6e,

y=f-1(x)=-6ec8aac122bd4f6e (x>0)

(2)∵6ec8aac122bd4f6e

∴{6ec8aac122bd4f6e}是公差为4的等差数列,

a1=1, 6ec8aac122bd4f6e=6ec8aac122bd4f6e+4(n-1)=4n-3,∵an>0,∴an=6ec8aac122bd4f6e.

(3)bn=Sn+1Sn=an+12=6ec8aac122bd4f6e,由bn<6ec8aac122bd4f6e,得m>6ec8aac122bd4f6e,

g(n)= 6ec8aac122bd4f6e,∵g(n)= 6ec8aac122bd4f6enN*上是减函数,

g(n)的最大值是g(1)=5,∴m>5,存在最小正整数m=6,使对任意nN*bn<6ec8aac122bd4f6e成立.

[例2]设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)

命题意图:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.属★★★★★级题目.

知识依托:本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列{lgan}为等差数列,分析该数列项的分布规律从而得解.

错解分析:题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方.

技巧与方法:突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Snn的二次函数,也可由函数解析式求最值.

解法一:设公比为q,项数为2m,mN*,依题意有

6ec8aac122bd4f6e

化简得6ec8aac122bd4f6e.

设数列{lgan}前n项和为Sn,则

Sn=lga1+lga1q2+…+lga1qn1=lga1n?q1+2++(n1)

=nlga1+6ec8aac122bd4f6en(n-1)?lgq=n(2lg2+lg3)-6ec8aac122bd4f6en(n-1)lg3

=(-6ec8aac122bd4f6e)?n2+(2lg2+6ec8aac122bd4f6elg3)?n

可见,当n=6ec8aac122bd4f6e时,Sn最大.

6ec8aac122bd4f6e=5,故{lgan}的前5项和最大.

解法二:接前,6ec8aac122bd4f6e,于是lgan=lg[108(6ec8aac122bd4f6e)n1]=lg108+(n-1)lg6ec8aac122bd4f6e,

∴数列{lgan}是以lg108为首项,以lg6ec8aac122bd4f6e为公差的等差数列,令lgan≥0,得2lg2-(n-4)lg3≥0,∴n6ec8aac122bd4f6e=5.5.

由于nN*,可见数列{lgan}的前5项和最大.

●锦囊妙计

1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.

2.在应用性质时要注意性质的前提条件,有时需要进行适当变形.

3.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导十一

难点11  函数中的综合问题

函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力.

●难点磁场

(★★★★★)设函数f(x)的定义域为R,对任意实数xy都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.

(1)求证:f(x)为奇函数;

(2)在区间[-9,9]上,求f(x)的最值.

●案例探究

[例1]设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1x2∈[0,6ec8aac122bd4f6e],都有f(x1+x2)=f(x1)?f(x2),且f(1)=a>0.

(1)求f(6ec8aac122bd4f6e)、f(6ec8aac122bd4f6e);

(2)证明f(x)是周期函数;

(3)记an=f(n+6ec8aac122bd4f6e),求6ec8aac122bd4f6e

命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力.

知识依托:认真分析处理好各知识的相互联系,抓住条件f(x1+x2)=f(x1)?f(x2)找到问题的突破口.

错解分析:不会利用f(x1+x2)=f(x1)?f(x2)进行合理变形.

技巧与方法:由f(x1+x2)=f(x1)?f(x2)变形为6ec8aac122bd4f6e是解决问题的关键.

(1)    解:因为对x1,x2∈[0,6ec8aac122bd4f6e],都有f(x1+x2)=f(x1)?f(x2),所以f(x)=6ec8aac122bd4f6e≥0,

x∈[0,1]

又因为f(1)=f(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e)?f(6ec8aac122bd4f6e)=[f(6ec8aac122bd4f6e)]2

f(6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e)?f(6ec8aac122bd4f6e)=[f6ec8aac122bd4f6e)]2

f(1)=a>0

f(6ec8aac122bd4f6e)=a6ec8aac122bd4f6e,f(6ec8aac122bd4f6e)=a6ec8aac122bd4f6e

(2)证明:依题意设y=f(x)关于直线x=1对称,故f(x)=f(1+1-x),即f(x)=f(2-x),xR.

又由f(x)是偶函数知f(-x)=f(x),xR

f(-x)=f(2-x),xR.

将上式中-xx代换得f(x)=f(x+2),这表明f(x)是R上的周期函数,且2是它的一个

周期.

(3)解:由(1)知f(x)≥0,x∈[0,1]

f(6ec8aac122bd4f6e)=f(n?6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e+(n-1) 6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e)?f((n-1)?6ec8aac122bd4f6e)

=……

=f(6ec8aac122bd4f6e)?f(6ec8aac122bd4f6e)?……?f(6ec8aac122bd4f6e)

=[f(6ec8aac122bd4f6e)]n=a6ec8aac122bd4f6e

f(6ec8aac122bd4f6e)=a6ec8aac122bd4f6e.

又∵f(x)的一个周期是2

f(2n+6ec8aac122bd4f6e)=f(6ec8aac122bd4f6e),因此an=a6ec8aac122bd4f6e

6ec8aac122bd4f6e

[例2]甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a元.

(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;

(2)为了使全程运输成本最小,汽车应以多大速度行驶?

命题意图:本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力.

知识依托:运用建模、函数、数形结合、分类讨论等思想方法.

错解分析:不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件.

技巧与方法:四步法:(1)读题;(2)建模;(3)求解;(4)评价.

解法一:(1)依题意知,汽车从甲地匀速行驶到乙地所用时间为6ec8aac122bd4f6e,全程运输成本为y=a?6ec8aac122bd4f6e+bv2?6ec8aac122bd4f6e=S(6ec8aac122bd4f6e+bv)

∴所求函数及其定义域为y=S(6ec8aac122bd4f6e+bv),v∈(0,c6ec8aac122bd4f6e.

(2)依题意知,Sabv均为正数

S(6ec8aac122bd4f6e+bv)≥2S6ec8aac122bd4f6e                      ①

当且仅当6ec8aac122bd4f6e=bv,即v=6ec8aac122bd4f6e时,①式中等号成立.若6ec8aac122bd4f6ec则当v=6ec8aac122bd4f6e时,有ymin

6ec8aac122bd4f6e>c,则当v∈(0,c6ec8aac122bd4f6e时,有S(6ec8aac122bd4f6e+bv)-S(6ec8aac122bd4f6e+bc)

=S[(6ec8aac122bd4f6e6ec8aac122bd4f6e)+(bvbc)]=6ec8aac122bd4f6e (cv)(abcv)

cv≥0,且c>bc2,∴abcvabc2>0

S(6ec8aac122bd4f6e+bv)≥S(6ec8aac122bd4f6e+bc),当且仅当v=c时等号成立,也即当v=c时,有ymin

综上可知,为使全程运输成本y最小,当6ec8aac122bd4f6ec时,行驶速度应为v=6ec8aac122bd4f6e,当6ec8aac122bd4f6e>c时行驶速度应为v=c.

解法二:(1)同解法一.

(2)∵函数y=x+6ec8aac122bd4f6e (k>0),x∈(0,+∞),当x∈(0,6ec8aac122bd4f6e)时,y单调减小,当x∈(6ec8aac122bd4f6e,+∞)时y单调增加,当x=6ec8aac122bd4f6ey取得最小值,而全程运输成本函数为y=Sb(v+6ec8aac122bd4f6e),v∈(0,c6ec8aac122bd4f6e.

∴当6ec8aac122bd4f6ec时,则当v=6ec8aac122bd4f6e时,y最小,若6ec8aac122bd4f6e>c时,则当v=c时,y最小.结论同上.

●锦囊妙计

在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用.综合问题的求解往往需要应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.

●歼灭难点训练

试题详情

2009年高考数学难点突破专题辅导九

难点指数函数、对数函数问题

指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.

●难点磁场

(★★★★★)设f(x)=log26ec8aac122bd4f6e,F(x)=6ec8aac122bd4f6e+f(x).

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

(2)若f(x)的反函数为f1(x),证明:对任意的自然数n(n≥3),都有f1(n)>6ec8aac122bd4f6e;

(3)若F(x)的反函数F1(x),证明:方程F1(x)=0有惟一解.

●案例探究

[例1]已知过原点O的一条直线与函数y=log8x的图象交于AB两点,分别过点ABy轴的平行线与函数y=log2x的图象交于CD两点.

(1)证明:点CD和原点O在同一条直线上;

(2)当BC平行于x轴时,求点A的坐标.

命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.

知识依托:(1)证明三点共线的方法:kOC=kOD.

(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标.

错解分析:不易考虑运用方程思想去解决实际问题.

技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标.

(1)证明:设点AB的横坐标分别为x1x2,由题意知:x1>1,x2>1,则AB纵坐标分别为log8x1,log8x2.因为AB在过点O的直线上,所以6ec8aac122bd4f6e,点CD坐标分别为(x1,log2x1),(x2,log2x2),由于log2x1=6ec8aac122bd4f6e=6ec8aac122bd4f6e3log8x2,所以OC的斜率:k1=6ec8aac122bd4f6e,

OD的斜率:k2=6ec8aac122bd4f6e,由此可知:k1=k2,即OCD在同一条直线上.

(2)解:由BC平行于x轴知:log2x1=log8x2  即:log2x1=6ec8aac122bd4f6elog2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3x1.又x1>1,∴x1=6ec8aac122bd4f6e,则点A的坐标为(6ec8aac122bd4f6e,log86ec8aac122bd4f6e).

[例2]在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,对每个自然数nPn位于函数y=2000(6ec8aac122bd4f6e)x(0<a<1)的图象上,且点Pn,点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.

(1)求点Pn的纵坐标bn的表达式;

(2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;

(3)设Cn=lg(bn)(nN*),若a取(2)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明理由.

命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级

题目.

知识依托:指数函数、对数函数及数列、最值等知识.

错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.

技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.

解:(1)由题意知:an=n+6ec8aac122bd4f6e,∴bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e.

(2)∵函数y=2000(6ec8aac122bd4f6e)x(0<a<10)递减,∴对每个自然数n,有bn>bn+1>bn+2.则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1>bn,即(6ec8aac122bd4f6e)2+(6ec8aac122bd4f6e)-1>0,解得a<-5(1+6ec8aac122bd4f6e)或a>5(6ec8aac122bd4f6e-1).∴5(6ec8aac122bd4f6e-1)<a<10.

(3)∵5(6ec8aac122bd4f6e-1)<a<10,∴a=7

bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e.数列{bn}是一个递减的正数数列,对每个自然数n≥2,Bn=bnBn1.于是当bn≥1时,Bn<Bn1,当bn<1时,BnBn1,因此数列{Bn}的最大项的项数n满足不等式bn≥1且bn+1<1,由bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e≥1得:n≤20.8.∴n=20.

●锦囊妙计

本难点所涉及的问题以及解决的方法有:

(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.

(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.

(3)应用题目.此类题目要求考生具有较强的建模能力.

●歼灭难点训练

试题详情


同步练习册答案