题目列表(包括答案和解析)
23.(天津市2008年)已知抛物线
,
(Ⅰ)若
,
,求该抛物线与
轴公共点的坐标;
(Ⅱ)若
,且当
时,抛物线与
轴有且只有一个公共点,求
的取值范围;
(Ⅲ)若
,且
时,对应的
;
时,对应的
,试判断当
时,抛物线与
轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
22.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为
)
![]()
21.(2008年乐山市)在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程
的两根:
(1) 求m,n的值
(2)
若∠ACB的平分线所在的直线
交x轴于点D,试求直线
对应的一次函数的解析式
(3)
过点D任作一直线
分别交射线CA,CB(点C除外)于点M,N,则
的值是否为定值,若是,求出定值,若不是,请说明理由
![]()
![]()
20.(2008年成都市)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且
=3
,sin∠OAB=
.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为
,△QNR的面积
,求
∶
的值.
![]()
19.(2008年四川省巴中市) 已知:如图14,抛物线
与
轴交于点
,点
,与直线
相交于点
,点
,直线
与
轴交于点
.
(1)写出直线
的解析式.
(2)求
的面积.
(3)若点
在线段
上以每秒1个单位长度的速度从
向
运动(不与
重合),同时,点
在射线
上以每秒2个单位长度的速度从
向
运动.设运动时间为
秒,请写出
的面积
与
的函数关系式,并求出点
运动多少时间时,
的面积最大,最大面积是多少?
![]()
18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形
的边
在
轴的负半轴上,边
在
轴的正半轴上,且
,
,矩形
绕点
按顺时针方向旋转
后得到矩形
.点
的对应点为点
,点
的对应点为点
,点
的对应点为点
,抛物线
过点
.
(1)判断点
是否在
轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在
轴的上方是否存在点
,点
,使以点
为顶点的平行四边形的面积是矩形
面积的2倍,且点
在抛物线上,若存在,请求出点
,点
的坐标;若不存在,请说明理由.
![]()
![]()
17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
,抛物线
经过
三点.
(1)求过
三点抛物线的解析式并求出顶点
的坐标;
(2)在抛物线上是否存在点
,使
为直角三角形,若存在,直接写出
点坐标;若不存在,请说明理由;
(3)试探究在直线
上是否存在一点
,使得
的周长最小,若存在,求出
点的坐标;若不存在,请说明理由.
![]()
![]()
16.(2008年浙江省绍兴市)将一矩形纸片
放在平面直角坐标系中,
,
,
.动点
从点
出发以每秒1个单位长的速度沿
向终点
运动,运动
秒时,动点
从点
出发以相等的速度沿
向终点
运动.当其中一点到达终点时,另一点也停止运动.设点
的运动时间为
(秒).
(1)用含
的代数式表示
;
(2)当
时,如图1,将
沿
翻折,点
恰好落在
边上的点
处,求点
的坐标;
(4)
连结
,将
沿
翻折,得到
,如图2.问:
与
能否平行?
与![]()
能否垂直?若能,求出相应的
值;若不能,说明理由.
![]()
![]()
15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
![]()
14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数
的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
(3)选做题:在平面直角坐标系中,点P的坐标
为(5,0),点Q的坐标为(0,3),把线段PQ向右平
移4个单位,然后再向上平移2个单位,得到线段P1Q1,
则点P1的坐标为 ,点Q1的坐标为 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com