题目列表(包括答案和解析)
4.
解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴ △AMN ∽ △ABC.
∴
,即
.
∴ AN=
x. ……………2分
∴
=
.(0<
<4) ……………3分
(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =
MN.
在Rt△ABC中,BC =
=5.
由(1)知 △AMN ∽ △ABC.
∴
,即
.
∴
,
∴
. …………………5分
过M点作MQ⊥BC
于Q,则
.
在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴ △BMQ∽△BCA.
∴
.
∴
,
.
∴ x=
.
∴ 当x=
时,⊙O与直线BC相切.…………………………………7分
(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.
∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.
∴ △AMO ∽ △ABP.
∴
. AM=MB=2.
故以下分两种情况讨论:
① 当0<
≤2时,
.
∴ 当
=2时,
……………………………………8分
② 当2<
<4时,设PM,PN分别交BC于E,F.
∵ 四边形AMPN是矩形,
∴ PN∥AM,PN=AM=x.
又∵ MN∥BC,
∴ 四边形MBFN是平行四边形.
∴ FN=BM=4-x.
∴
.
又△PEF ∽ △ACB.
∴
.
∴
. ……………………………………………… 9分
=
.……………………10分
当2<
<4时,![]()
.
∴ 当
时,满足2<
<4,
. ……………………11分
综上所述,当
时,
值最大,最大值是2. …………………………12分
3. 解:(1)![]()
,
,
,
.
点
为
中点,
.
,
.
,
,
.
(2)
,
.
,
,
,
,
即
关于
的函数关系式为:
.
(3)存在,分三种情况:
①当
时,过点
作
于
,则
.
,
,
.
,
,
![]()
,
.
②当
时,
,
.
③当
时,则
为
中垂线上的点,
于是点
为
的中点,
.
,
,
.
综上所述,当
为
或6或
时,
为等腰三角形.
2. (1)
∵A,B两点的坐标分别是A(10,0)和B(8,
),
∴
,
∴![]()
当点A´在线段AB上时,∵
,TA=TA´,
∴△A´TA是等边三角形,且
,
∴
,
,
|
|
|
|
|
|
|
|
|
|
所以此时
.
(2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,
纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),
|
|
|
又由(1)中求得当A´与B重合时,T的坐标是(6,0)
|
|
|
|
|
|
|
|
在对称轴t=10的左边,S的值随着t的增大而减小,
∴当t=6时,S的值最大是
.
2当
时,由图1,重叠部分的面积![]()
∵△A´EB的高是
,
∴![]()
![]()
当t=2时,S的值最大是
;
3当
,即当点A´和点P都在线段AB的延长线是(如图2,其中E是TA´与CB的交点,F是TP与CB的交点),
∵
,四边形ETAB是等腰形,∴EF=ET=AB=4,
∴![]()
综上所述,S的最大值是
,此时t的值是
.
1.
解:( 1)由已知得:![]()
解得
c=3,b=2
∴抛物线的线的解析式为![]()
(2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)
设对称轴与x轴的交点为F
所以四边形ABDE的面积=![]()
=![]()
=![]()
=9
(3)相似
如图,BD=![]()
BE=![]()
DE=![]()
所以
,
即:
,所以
是直角三角形
所以
,且
,
所以
.
29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:
(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?
(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?
答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)
|
|
|
|
压轴题答案
28. (2008年江苏省南通市)已知双曲线
与直线
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线
上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
![]()
27. (2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC?
(2)设△AQP的面积为y(
),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
![]()
![]()
26. (2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.
如图,甲,乙两村坐落在夹角为
的两条公路的
段和
段(村子和公路的宽均不计),点
表示这所中学.点
在点
的北偏西
的3km处,点
在点
的正西方向,点
在点
的南偏西
的
km处.
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点
处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段
某处),甲村要求管道建设到
处,请你在图①中,画出铺设到点
和点
处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段
某处),请你在图②中,画出铺设到乙村某处和点
处的管道长度之和最小的线路图,并求其最小值.
综上,你认为把供水站建在何处,所需铺设的管道最短?
![]()
![]()
25. (2008年上海市)已知
,
,
(如图13).
是射线
上的动点(点
与点
不重合),
是线段
的中点.
(1)设
,
的面积为
,求
关于
的函数解析式,并写出函数的定义域;
(2)如果以线段
为直径的圆与以线段
为直径的圆外切,求线段
的长;
(3)联结
,交线段
于点
,如果以
为顶点的三角形与
相似,求线段
的长.
24.(2008年大庆市)
如图①,四边形
和
都是正方形,它们的边长分别为
(
),且点
在
上(以下问题的结果均可用
的代数式表示).
(1)求
;
(2)把正方形
绕点
按逆时针方向旋转45°得图②,求图②中的
;
(3)把正方形
绕点
旋转一周,在旋转的过程中,
是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com