0  253169  253177  253183  253187  253193  253195  253199  253205  253207  253213  253219  253223  253225  253229  253235  253237  253243  253247  253249  253253  253255  253259  253261  253263  253264  253265  253267  253268  253269  253271  253273  253277  253279  253283  253285  253289  253295  253297  253303  253307  253309  253313  253319  253325  253327  253333  253337  253339  253345  253349  253355  253363  447090 

y=x3
 
y=-x3
 
 

试题详情

有些老师常在序言课上板着面孔提出要“认真听讲,认真做好作业,课前要预习,课后要复习”的要求,这些自学生跨进校门之日起就听惯了的老调,并没有多少效果。我们的做法是让学生自由讨论,各抒己见。因为通过以上活动,学生对立体几何的兴趣被点燃以后,便自然想到:“我们怎样才能学好立几知识呢?经过讨论以后,教师再归纳得出学好立几的主要方法:①加强与平几知识的联系,注意用对比的方法区别异同,掌握实质;②注意对实物、教具和模型的观察和分析,培养空间想象能力;③自己动手制作模型,以加深对立几知识的理解和应用。为了学好第一章,我们要求学生准备好硬纸板三块(代平面用),竹针或铅丝四根(代直线用),在学习中随时进行模型演示,以逐步建立起空间观念。

试题详情

部分学生认为立体几何比平面几何难学,存在畏惧心理;多数学生对能不能学好这门功课信心不足,对怎样学习这门功课心中无数。这种消极心理状态必然会给学习造成消极影响。因此在序言课教学中,应把排除上述心理障碍,激发学生学习立体几何的兴趣作为首先任务。

1.尽量引用实例。

“引言”中指出,“建造厂房、制造机器、修筑堤坝等,都需要进一步研究空间图形的问题。”为了使学生真正认识到立体几何是一门应用广泛的基础学科,我们在序言课上展示学校教学楼的建筑图纸,学生争相观看,兴趣盎然,并能辨认出:“这就是我们的教学楼!”教者由此指出:“没有立体几何知识,这张图纸是画不出来的。”“同学们能从图纸上看出是我们的教学楼,这说明大家已具有一定的空间想象能力,这正是学习立体几何的基础。有这样好的基础,何愁学不好它?”听到这些鼓励,学生常露出自信的微笑。

试题详情

立体几何序言课以课本中的“引言”为主要教学内容,让学生对立体几何这门功课有一个粗略的整体性了解,在学习具体内容之前有一个积极的思想准备。通过序言课的教学,学生明白了立体几何研究的内容及学习立体几何的目的,就能为以后的学习打下一个良好的基础。

然而有的老师对序言课却不够重视,把已经十分抽象概括的“引言”进一步抽象概括,开课后草草几句便开始了“平面”的教学。教师急急匆匆,学生稀里糊涂,极易给后继学习带来消极影响。

由此可见,教师在充分认识序言课重要性的前提下,认真组织教学,努力完成序言课的教学任务,对提高立体几何课的教学效益是至关重要的。

试题详情

27、(山西05)在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区。

(1)求圆形区域的面积(π取3.14);

(2)某时刻海面上出现一渔船A,在观测点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离(≈1.7,保留三个有效数字);

(3)当渔船A由(2)中位置向正西方航行时,是否会进入海洋生物保护区?通过计算回答。

(08资阳)如图8,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.

(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求AB之间的距离;

(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)

试题详情

26、(08泸州)如图,在气象站台A的正西方向的B处有一台风中心,该台风中心以每小时的速度沿北偏东的BD方向移动,在距离台风中心内的地方都要受到其影响。

⑴台风中心在移动过程中,与气象台A的最短距离是多少?

⑵台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的实践会持续多长?

试题详情

25、(河北08)气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点)的南偏东方向的点生成,测得.台风中心从点以40km/h的速度向正北方向移动,经5h后到达海面上的点处.因受气旋影响,台风中心从点开始以30km/h的速度向北偏西方向继续移动.以为原点建立如图所示的直角坐标系.

(1)台风中心生成点的坐标为       ,台风中心转折点的坐标为      ;(结果保留根号)

(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点)位于点的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

试题详情

24、(河北07)某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h(即m/s).交通管理部门在离该公路100 m处设置了一速度监测点A,在如图所示的坐标系中,点A位于y轴上,测速路段BCx轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.

(1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;

(2)点B坐标为        ,点C坐标为        

(3)一辆汽车从点B行驶到点C所用的时间为15 s,请通过计算,判断该汽车在限速公路上是否超速行驶?(本小问中)

试题详情


同步练习册答案