024]如图,已知
为直角三角形,
,
,点
、
在
轴上,点
坐标为(
,
)(
),线段
与
轴相交于点
,以
(1,0)为顶点的抛物线过点
、
.
(1)求点
的坐标(用
表示);
(2)求抛物线的解析式;
(3)设点
为抛物线上点
至点
之间的一动点,连结
并延长交
于点
,连结
并延长交
于点
,试证明:
为定值.
023]如图,在梯形
中,
点
是
的中点,
是等边三角形.
(1)求证:梯形
是等腰梯形;
(2)动点
、
分别在线段
和
上运动,且
保持不变.设
求
与
的函数关系式;
(3)在(2)中:①当动点
、
运动到何处时,以点
、
和点
、
、
、
中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当
取最小值时,判断
的形状,并说明理由.
022]一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
![]()
021]如图,点P是双曲线
上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=
(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1= ▲ (用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记
,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com