21.(本小题满分13分)
已知数列
中,
且点
在直线
上。
(1)求数列
的通项公式;
![]()
(2)若函数
求函数
的最小值;
(3)设
表示数列
的前
项和。试问:是否存在关于
的整式
,使得
![]()
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由。
2010届高三5月份岳澧联考试卷
数学(理科)
20.(本小题满分13分)
已知椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆相切。
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直于直线
,垂足为点
,线段
的垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围。
19.(本小题满分13分)
(本小题满分12分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中).
当
时,图象是抛物线的一部分,当
和
时,图象是线段.
(1)当
时,求注意力指标数y与时间x的函数关系式;
(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.
18.(本小题满分12分)
如图是某三棱柱被削去一个底面后的直观图与侧视图、俯视图.已知
,侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.
(Ⅰ)求该几何体的体积;
(Ⅱ)求二面角
的余弦值.
![]()
17.(本小题满分12分)
某篮球职业联赛的总决赛在甲队与乙队间角逐,采用五局三胜制,即若一队先胜三场,则此队获胜,比赛结束,因两队实力相当,每场比赛获胜的可能性相等,据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入都比上一场增加10万元,问:
⑴组织者在此次总决赛中获得门票收入不少于180万元的概率是多少?
⑵用
表示组织者在此次总决赛中的门票收入,求
的数学期望?
16.(本小题满分12分)
已知函数
(其中
为正常数,
)的最小正周期为
.
(1)求
的值;
(2)在△
中,若
,且
,求
.
15.已知△ABC内接于半径为1的圆O,且满足
,
则∠AOB= ,△ABC的面积S= .
14.已知
,
则
= .
13.在
上任取两个数
,那么函数
无零点的概率为____ ____.
12.如图4,已知
是⊙
的切线,
是切点,直线![]()
交⊙
于
、
两点,
是
的中点,连结
并延长
交⊙
于点
.若
,
,则
= .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com