106.(08四川乐山28题)28.如图(18),在平面直角坐标系中,
的边
在
轴上,且
,以
为直径的圆过点
.若点
的坐标为
,
,A、B两点的横坐标
,
是关于
的方程
的两根.
(1)求
、
的值;
(2)若
平分线所在的直线
交
轴于点
,试求直线
对应的一次函数解析式;
(3)过点
任作一直线
分别交射线
、
(点
除外)于点
、
.则
的是否为定值?若是,求出该定值;若不是,请说明理由.
(08四川乐山28题解析)28.解:(1)
以
为直径的圆过点
,
,而点
的坐标为
,
由
易知
,
,····································································································· 1分
即:
,解之得:
或
.
,
,
即
.···································································································· 2分
由根与系数关系有:
,
解之
,
.································································································ 4分
(2)如图(3),过点
作
,交
于点
,
易知
,且
,
在
中,易得
,··········· 5分
,
,
又
,有
,
,······································································································· 6分
,
则
,即
,························································································ 7分
易求得直线
对应的一次函数解析式为:
.··················································· 8分
解法二:过
作
于
,
于
,
由
,
求得
.········································································································ 5分
又
,
求得
.····························································································· 7分
即
,
易求得直线
对应的一次函数解析式为:
.··················································· 8分
(3)过点
作
于
,
于
.
为
的平分线,
.
由
,有
········································································· 9分
由
,有
······································································ 10分
,··············································································· 11分
即
.···················································································· 12分
105.(08湖南邵阳25题)25.如图(十七),将含
角的直角三角板
(
)绕其直角顶点
逆时针旋转
解(
),得到
,
与
相交于点
,过点
作
交
于点
,连结
.设
,
的面积为
,
的面积为
.
(1)求证:
是直角三角形;
(2)试求用
表示
的函数关系式,并写出
的取值范围;
(3)以点
为圆心,
为半径作
,
①当直线
与
相切时,试探求
与
之间的关系;
②当![]()
时,试判断直线
与
的位置关系,并说明理由.
(08湖南邵阳25题解析)25. (1)
,
又
,································································· 1分
又
,···························································· 2分
,
,即
是直角三角形;······························································ 3分
(2)在
中,
,
,
,
,
;··············································································· 4分
;··························· 5分
(3)①直线
与
相切时,则
.
,
.
,································································· 6分
又
,
是等边三角形,
,
,
又
;······································································ 7分
②当
时,
则有
,解之得
或
;··················································· 8分
(i)当
时,
,
在
中,
,
,
在
中,
,········································· 9分
,即
,
直线
与
相离;···························································································· 10分
(ii)当
时,
同理可求出:
,·············································· 11分
,
直线
与
相交.···························································································· 12分
104.(08贵州遵义27题)27。(14分)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△ B1B2F与△ B1CF相似?![]()
![]()
(08贵州遵义27题解析)解:(1) 四边形B2FD1E是矩形。
因为△AB1D1平移到图(3)的,所以四边形B2FD1E是一个平行四边形,又因为在平行四边形ABCD中,AB=10,AD=6,BD=8,则有∠ADB是直角。所以四边形B2FD1E是矩形。
(2)因为三角形B1B2F与三角形AB1D1相似,则有B2F=
=0.6X,B1F=
=0.8x
所以sB2FD1E=B2F×D1F=0.6X × (8-0.8x)=4.8x-0.48x2
即y=4.8x-0.48x2=12-0.48(x-5)
当x=5时,y=12是最大的值。
(3)要使△ B1B2F与△ B1CF相似,则有
即![]()
解之得:x=3.6
103.
(08云南省卷24题) 24.(本大题满分14分)如图12,已知二次函数图象的顶点坐标为C(1,0),直线
与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴
上.
(1)求
的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作
轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为
,点P的横坐标为
,求
与
之间的函数关系式,并写出自变量
的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(08云南省卷24题解析) (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP∥CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴
得x2-3x+2=0.
………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
102.(08新疆乌鲁木齐23题)23.如图9,在平面直角坐标系中,以点
为圆心,2为半径作圆,交
轴于
两点,开口向下的抛物线经过点
,且其顶点
在
上.
(1)求
的大小;
(2)写出
两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点
,使线段
与
互相平分?若存在,求出点
的坐标;若不存在,请说明理由.
(08新疆乌鲁木齐23题解答)23.解:(1)作
轴,
为垂足,
,半径
······················································ 1分
,
······································ 3分
(2)
,半径![]()
,故
,············································ 5分
········································································· 6分
(3)由圆与抛物线的对称性可知抛物线的顶点
的坐标为
··································· 7分
设抛物线解析式
·················································································· 8分
把点
代入上式,解得
······································································· 9分
····································································································· 10分
(4)假设存在点
使线段
与
互相平分,则四边形
是平行四边形········· 11分
且
.
轴,
点
在
轴上.·············································································· 12分
又
,
,即
.
又
满足
,
点
在抛物线上······································································································ 13分
所以存在
使线段
与
互相平分.···························································· 14分
101.
(08四川南充21题)21.如图,已知平面直角坐标系中,有一矩形纸片
,
为坐标原点,
轴,
,现将纸片按如图折叠,
为折痕,
.折叠后,点
落在点
,点
落在线段
上的
处,并且
与
在同一直线上.
(1)求
的坐标;
(2)求经过三点
的抛物线的解析式;
(3)若
的半径为
,圆心
在(2)的抛物线上运动,
与两坐标轴都相切时,求
半径
的值.
(08四川南充21题解答)21.解:(1)过
作
轴于点
,如图(第21题图)
在
中,
,![]()
································· 1分
由对称性可知:![]()
![]()
············································································ 2分
![]()
点
的坐标为
····························································································· 3分
(2)设经过
的抛物线的解析式为
,则
································································································· 4分
解之得
![]()
抛物线的解析式为:
································································· 5分
(3)
与两坐标轴相切
圆心
应在第一、三象限或第二、四象限的角平分线上.
即在直线
或
上·························································································· 6分
若点
在直线
上,根据题意有
![]()
解之得
,![]()
![]()
![]()
····································································································· 7分
若点
在直线
上,根据题意有
![]()
解之得
,![]()
![]()
![]()
的半径
为
或
.······································································ 8分
96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1) 如图1,在圆O所在平面上,放置一条直线
(
和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?
(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线
和
(
与圆O分别交于点A、B,
与圆O分别交于点C、D).
请你根据所构造的图形提出一个结论,并证明之.
(3) 如图3,其中AB是圆O的直径,AC是弦,D是![]()
的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.
(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分)
(2) 情形1 如图21,AB为弦,CD为垂直于弦AB的直径. …………………………3分
结论:(垂径定理的结论之一). …………………………………………………………4分
证明:略(对照课本的证明过程给分). …………………………………………………7分
情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交于点P.
结论:
.
证明:略.
情形3 (图略)AB为弦,CD为弦,且
与
在圆外相交于点P.
结论:
.
证明:略.
![]()
情形4 如图23,AB为弦,CD为弦,且AB∥CD.
结论: = .
证明:略.
(上面四种情形中做一个即可,图1分,结论1分,证明3分;
其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)
(3) 若点C和点E重合,
则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分
设
,则
,
.………………………………9分
又D是 的中点,所以
,
即
.………………………………………………………10分
解得
.……………………………………………………………11分
(若求得
或
等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明)
95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
(08山东聊城25题解答)(本题满分12分)
解:(1)设正方形的边长为
cm,则
.························································································ 1分
即
.
解得
(不合题意,舍去),
.
剪去的正方形的边长为1cm.·············································································· 3分
(注:通过观察、验证直接写出正确结果给3分)
(2)有侧面积最大的情况.
设正方形的边长为
cm,盒子的侧面积为
cm2,
则
与
的函数关系式为:
.
即
.······························································································· 5分
改写为
.
当
时,
.
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.········ 7分
(3)有侧面积最大的情况.
设正方形的边长为
cm,盒子的侧面积为
cm2.
若按图1所示的方法剪折,则
与
的函数关系式为:
.
即
.
当
时,
.····························· 9分
若按图2所示的方法剪折,则
与
的函数关系式为:
.
即
.
当
时,
.················································································· 11分
比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为
cm时,折成的有盖长方体盒子的侧面积最大,最大面积为
cm2.
说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.
94.(08广东梅州23题)
23.本题满分11分.
如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为
轴,过D且垂直于AB的直线为
轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使
PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
(08广东梅州23题解答)解: (1)
DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,················································································ 0.5分
∠DAB=∠CBA,
∠DAB=2∠DBA, ············· 1分
∠DAB+∠DBA=90
,
∠DAB=60
, ··········· 1.5分
∠DBA=30
,
AB=4,
DC=AD=2, ·········· 2分
Rt
AOD,OA=1,OD=
,··························· 2.5分
A(-1,0),D(0,
),C(2,
). · 4分
(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),
故可设所求为
=
(
+1)(
-3) ······························································ 6分
将点D(0,
)的坐标代入上式得,
=
.
所求抛物线的解析式为
=
·········································· 7分
其对称轴L为直线
=1.······················································································ 8分
(3)
PDB为等腰三角形,有以下三种情况:
①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B,
P1DB为等腰三角形; ·················································································· 9分
②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3,
P2DB,
P3DB为等腰三角形;
③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ······················ 10分
由于以上各点互不重合,所以在直线L上,使
PDB为等腰三角形的点P有5个.
93.(08福建南平26题)26.(14分)
(1)如图1,图2,图3,在
中,分别以
为边,向
外作正三角形,正四边形,正五边形,
相交于点
.
![]()
①如图1,求证:
;
②探究:如图1,
;
如图2,
;
如图3,
.
(2)如图4,已知:
是以
为边向
外所作正
边形的一组邻边;
是以
为边向
外所作正
边形的一组邻边.
的延长相交于点
.
①猜想:如图4,
(用含
的式子表示);
②根据图4证明你的猜想.
(08福建南平26题解答)(1)①证法一:
与
均为等边三角形,
,
························································································ 2分
且
··············································· 3分
,
即
························································ 4分
.··················································· 5分
证法二:
与
均为等边三角形,
,
························································································ 2分
且
························································································ 3分
可由
绕着点
按顺时针方向旋转
得到··································· 4分
.··························································································· 5分
②
,
,
.········································································ 8分(每空1分)
(2)①
········································································································ 10分
②证法一:依题意,知
和
都是正
边形的内角,
,
,
![]()
,即
.····························· 11分
.·························································································· 12分
,
,
······ 13分
,![]()
········································ 14分
证法二:同上可证
.··························································· 12分
,如图,延长
交
于
,
![]()
,
································ 13分
················· 14分
证法三:同上可证
.··························································· 12分
.![]()
![]()
,![]()
························································ 13分
即
········································································ 14分
证法四:同上可证
.··························································· 12分
![]()
.如图,连接
,![]()
![]()
.···································· 13分
即
······························· 14分
注意:此题还有其它证法,可相应评分.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com