0  314499  314507  314513  314517  314523  314525  314529  314535  314537  314543  314549  314553  314555  314559  314565  314567  314573  314577  314579  314583  314585  314589  314591  314593  314594  314595  314597  314598  314599  314601  314603  314607  314609  314613  314615  314619  314625  314627  314633  314637  314639  314643  314649  314655  314657  314663  314667  314669  314675  314679  314685  314693  447090 

92.(08四川资阳24题)24.(本小题满分12分)

如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.

(1)求抛物线的解析式;

(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;

(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

(08四川资阳24题解答)(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,

∴∠OCA+∠OCB=90°,

又∵∠OCB+∠OBC=90°,

∴∠OCA=∠OBC,

又∵∠AOC= ∠COB=90°,

∴ΔAOC∽ ΔCOB,························································································· 1分

又∵A(–1,0),B(9,0),

,解得OC=3(负值舍去).

∴C(0,–3),

······················································································································ 3分

设抛物线解析式为y=a(x+1)(x–9),

∴–3=a(0+1)(0–9),解得a=

∴二次函数的解析式为y=(x+1)(x–9),即y=x2x–3.···························· 4分

(2) ∵AB为O′的直径,且A(–1,0),B(9,0),

∴OO′=4,O′(4,0),····················································································· 5分

∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,

∴∠BCD=∠BCE=×90°=45°,

连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5.

∴D(4,–5).································································································· 6分

∴设直线BD的解析式为y=kx+b(k≠0)

··························································· 7分

解得

∴直线BD的解析式为y=x–9.····································· 8分

(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,

解法一:设射线DP交⊙O′于点Q,则

分两种情况(如答案图1所示):

①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).

∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,

因此,点Q1(7,–4)符合

∵D(4,–5),Q1(7,–4),

∴用待定系数法可求出直线DQ1解析式为y=x–.··································· 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

······················································································································ 10分

②∵Q1(7,–4),

∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合

∵D(4,–5),Q2(7,4).

∴用待定系数法可求出直线DQ2解析式为y=3x–17.······································ 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

······················································································································ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法二:分两种情况(如答案图2所示):

①当DP1∥CB时,能使∠PDB=∠CBD.

∵B(9,0),C(0,–3).

∴用待定系数法可求出直线BC解析式为y=x–3.

又∵DP1∥CB,∴设直线DP1的解析式为y=x+n.

把D(4,–5)代入可求n= –

∴直线DP1解析式为y=x–.························· 9分

解方程组

∴点P1坐标为(),[坐标为()不符合题意,舍去].

······················································································································ 10分

②在线段O′B上取一点N,使BN=DM时,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.

由①知,直线BC解析式为y=x–3.

取x=4,得y= –,∴M(4,–),∴O′N=O′M=,∴N(,0),

又∵D(4,–5),

∴直线DN解析式为y=3x–17.······································································ 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].

······················································································································ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

解法三:分两种情况(如答案图3所示):

①求点P1坐标同解法二.··············································································· 10分

②过C点作BD的平行线,交圆O′于G,

此时,∠GDB=∠GCB=∠CBD.

由(2)题知直线BD的解析式为y=x–9,

又∵ C(0,–3)

∴可求得CG的解析式为y=x–3,

设G(m,m–3),作GH⊥x轴交与x轴与H,

连结O′G,在Rt△O′GH中,利用勾股定理可得,m=7,

由D(4,–5)与G(7,4)可得,

DG的解析式为,··········································································· 11分

解方程组

∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].························ 12分

∴符合条件的点P有两个:P1(),P2(14,25).

说明:本题解法较多,如有不同的正确解法,请按此步骤给分.

试题详情

91.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.

(1)在如图所示的平面直角坐标系中,求抛物线的表达式.

(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

 

(08新疆自治区24题解析)24.(10分)解:(1)设抛物线的表达式为 1分

在抛物线的图象上.

······························································ 3分

∴抛物线的表达式为············································································· 4分

(2)设窗户上边所在直线交抛物线于CD两点,D点坐标为(kt)

已知窗户高1.6m,∴··························································· 5分

(舍去)············································································ 6分

(m)·············································································· 7分

又设最多可安装n扇窗户

····················································································· 9分

答:最多可安装4扇窗户.···················································································· 10分

(本题不要求学生画出4个表示窗户的小矩形)

试题详情

24.解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为(a≠0)

又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1

 ∴y=x2-2x-3····································································································· 3分

自变量范围:-1≤x≤3···················································································· 4分

      解法2:设抛物线的解析式为(a≠0)

       根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

,解之得:

y=x2-2x-3····································································································· 3分

自变量范围:-1≤x≤3····························································· 4分

      (2)设经过点C“蛋圆”的切线CEx轴于点E,连结CM

       在RtMOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=

       在RtMCE中,∵OC=2,∠CMO=60°,∴ME=4

 ∴点CE的坐标分别为(0,),(-3,0) ·················································· 6分

∴切线CE的解析式为··························································· 8分

 (3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ························· 9分

        由题意可知方程组只有一组解

  即有两个相等实根,∴k=-2············································· 11分

  ∴过点D“蛋圆”切线的解析式y=-2x-3····················································· 12分

 

试题详情

24.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.

如图12,点ABCD分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.

(1)  请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;

(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

(08湖南益阳24题解析)七、(本题12分)

试题详情

12.(08湖南长沙)26.如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.

(1)当∠BAD=75°时,求的长;

(2)求证:BC∥AD∥FE;

(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.

(08湖南长沙26题解析)26.(1)连结OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°,······ (1分)

∵AB=CD,∴∠COD=∠AOB=30°,∴∠BOC=120°,···································· (2分)

故的长为.··························································································· (3分)

(2)连结BD,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD,································· (5分)

同理EF∥AD,从而BC∥AD∥FE.································································· (6分)

(3)过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,

从而BC=AD-2AM=2r-2AM.············································································ (7分)

∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB

∴AM==,∴BC=2r-,同理EF=2r-············································ (8分)

∴L=4x+2(2r-)==,其中0<x< ·········· (9分)

∴当x=r时,L取得最大值6r.······································································ (10分)

13(08湖南益阳)七、(本题12分)

试题详情

11.(08湖北咸宁)24.(本题(1)-(3)小题满分12分,(4)小题为附加题另外附加2分)

如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.

(1)  当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2) 求正方形边长及顶点C的坐标;

(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.

(1)  附加题:(如果有时间,还可以继续

解答下面问题,祝你成功!)

如果点P、Q保持原速度速度不

变,当点P沿ABCD

速运动时,OPPQ能否相等,

若能,写出所有符合条件的t

值;若不能,请说明理由.

(08湖北咸宁24题解析)24.解:(1)(1,0)  -----------------------------1分

       点P运动速度每秒钟1个单位长度.-------------------------------3分

     (2) 过点BFy轴于点轴于点,则=8,.

       ∴.

       在Rt△AFB中,.----------------------------5分

      过点轴于点,与的延长线交于点.

∴△ABF≌△BCH.

 .

.

∴所求C点的坐标为(14,12).------------7分

     (3) 过点PPMy轴于点MPN轴于点N

则△APM∽△ABF.

      .  .

 ∴.  ∴.

设△OPQ的面积为(平方单位)

(0≤≤10)  ------------------10分

    说明:未注明自变量的取值范围不扣分.

 ∵<0  ∴当时, △OPQ的面积最大.------------11分

     此时P的坐标为() .  ---------------------------------12分

   (4)  时,  OPPQ相等.---------------------------14分

     对一个加1分,不需写求解过程.

试题详情

10.(08湖北武汉)(本题答案暂缺)25.(本题 12分)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转 180°后得△MNQ(点M,N,Q分别与 点 A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

        

(08湖北武汉25题解析)25.⑴;⑵;⑶M(3,2),N(1,3)

试题详情

9.(08湖北天门)(本题答案暂缺)24(本小题满分12)如图①,在平面直角坐标系中,A点坐标为(30)B点坐标为(04).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.

(1)N的坐标为(________________,________________)(用含x的代数式表示)

(2)x为何值时,△AMN为等腰三角形?

(3)如图②,连结ON△OMN△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.

 

试题详情

8.(08湖北荆州25题解析)(本题答案暂缺)25.(本题12分)如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.

  (1)求折痕EF的长;

  (2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在,求出t值;若不存在,请说明理由;

  (3)直接写出S与t的函数关系式及自变量t的取值范围.

试题详情

7.(08湖北荆门)28.(本小题满分12分)

已知抛物线y=ax2+bx+c的顶点Ax轴上,与y轴的交点为B(0,1),且b=-4ac

 (1) 求抛物线的解析式;

(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;

(3) 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?

 

(08湖北荆门28题解析)28.解:(1)由抛物线过B(0,1) 得c=1.

     又b=-4ac,  顶点A(-,0),

     ∴-==2c=2.∴A(2,0).    ………………………………………2分

     将A点坐标代入抛物线解析式,得4a+2b+1=0 ,   

 ∴  解得a =,b =-1.

     故抛物线的解析式为y=x2-x+1.    ………………………………………4分

     另解: 由抛物线过B(0,1) 得c=1.又b2-4ac=0,  b=-4ac,∴b=-1.  ………2分

     ∴a=,故y=x-x+1.       ……………………………………………4分

  (2)假设符合题意的点C存在,其坐标为C(xy),        

     作CDx轴于D ,连接ABAC

  ∵A在以BC为直径的圆上,∴∠BAC=90°.

     ∴ △AOB∽△CDA

     ∴OB·CD=OA·AD

     即1·y=2(x-2), ∴y=2x-4.   ……………………6分

     由    解得x1=10,x2=2.

∴符合题意的点C存在,且坐标为 (10,16),或(2,0).  ………………………8分

    ∵P为圆心,∴PBC中点.

     当点C坐标为 (10,16)时,取OD中点P1 ,连PP1 , 则PP1为梯形OBCD中位线.

PP1=(OB+CD)=.∵D (10,0), ∴P1 (5,0), ∴P (5, ). 

     当点C坐标为 (2,0)时, 取OA中点P2 ,连PP2 , 则PP2为△OAB的中位线.

PP2=OB=.∵A (2,0), ∴P2(1,0), ∴P (1,). 

故点P坐标为(5, ),或(1,).  ……………………………………10分

(3)设BPC三点的坐标为B(x1,y1), P(x2,y2), C(x3,y3),由(2)可知:

         ………………………………………12分                                            

试题详情


同步练习册答案