92.(08四川资阳24题)24.(本小题满分12分)
如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
(08四川资阳24题解答)(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,························································································· 1分
∴
.
又∵A(–1,0),B(9,0),
∴
,解得OC=3(负值舍去).
∴C(0,–3),
······················································································································ 3分
设抛物线解析式为y=a(x+1)(x–9),
∴–3=a(0+1)(0–9),解得a=
,
∴二次函数的解析式为y=
(x+1)(x–9),即y=
x2–
x–3.···························· 4分
(2) ∵AB为O′的直径,且A(–1,0),B(9,0),
∴OO′=4,O′(4,0),····················································································· 5分
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD=
∠BCE=
×90°=45°,
连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
AB=5.
∴D(4,–5).································································································· 6分
∴设直线BD的解析式为y=kx+b(k≠0)
∴
··························································· 7分
解得![]()
∴直线BD的解析式为y=x–9.····································· 8分
(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,
解法一:设射线DP交⊙O′于点Q,则
.
分两种情况(如答案图1所示):
①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).
∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,
因此,点Q1(7,–4)符合
,
∵D(4,–5),Q1(7,–4),
∴用待定系数法可求出直线DQ1解析式为y=
x–
.··································· 9分
解方程组
得![]()
![]()
∴点P1坐标为(
,
),[坐标为(
,
)不符合题意,舍去].
······················································································································ 10分
②∵Q1(7,–4),
∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合
.
∵D(4,–5),Q2(7,4).
∴用待定系数法可求出直线DQ2解析式为y=3x–17.······································ 11分
解方程组
得![]()
![]()
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].
······················································································································ 12分
∴符合条件的点P有两个:P1(
,
),P2(14,25).
解法二:分两种情况(如答案图2所示):
①当DP1∥CB时,能使∠PDB=∠CBD.
∵B(9,0),C(0,–3).
∴用待定系数法可求出直线BC解析式为y=
x–3.
又∵DP1∥CB,∴设直线DP1的解析式为y=
x+n.
把D(4,–5)代入可求n= –
,
∴直线DP1解析式为y=
x–
.························· 9分
解方程组
得![]()
![]()
∴点P1坐标为(
,
),[坐标为(
,
)不符合题意,舍去].
······················································································································ 10分
②在线段O′B上取一点N,使BN=DM时,得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.
由①知,直线BC解析式为y=
x–3.
取x=4,得y= –
,∴M(4,–
),∴O′N=O′M=
,∴N(
,0),
又∵D(4,–5),
∴直线DN解析式为y=3x–17.······································································ 11分
解方程组
得![]()
![]()
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].
······················································································································ 12分
∴符合条件的点P有两个:P1(
,
),P2(14,25).
解法三:分两种情况(如答案图3所示):
①求点P1坐标同解法二.··············································································· 10分
②过C点作BD的平行线,交圆O′于G,
此时,∠GDB=∠GCB=∠CBD.
由(2)题知直线BD的解析式为y=x–9,
又∵ C(0,–3)
∴可求得CG的解析式为y=x–3,
设G(m,m–3),作GH⊥x轴交与x轴与H,
连结O′G,在Rt△O′GH中,利用勾股定理可得,m=7,
由D(4,–5)与G(7,4)可得,
DG的解析式为
,··········································································· 11分
解方程组
得![]()
![]()
∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].························ 12分
∴符合条件的点P有两个:P1(
,
),P2(14,25).
说明:本题解法较多,如有不同的正确解法,请按此步骤给分.
91.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
![]()
(08新疆自治区24题解析)24.(10分)解:(1)设抛物线的表达式为
1分
点
在抛物线的图象上.
∴![]()
······························································ 3分
∴抛物线的表达式为
············································································· 4分
(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t)
已知窗户高1.6m,∴
··························································· 5分
![]()
(舍去)············································································ 6分
∴
(m)·············································································· 7分
又设最多可安装n扇窗户
∴
····················································································· 9分
.
答:最多可安装4扇窗户.···················································································· 10分
(本题不要求学生画出4个表示窗户的小矩形)
24.解:(1)解法1:根据题意可得:A(-1,0),B(3,0);
则设抛物线的解析式为
(a≠0)
又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-3····································································································· 3分
自变量范围:-1≤x≤3···················································································· 4分
解法2:设抛物线的解析式为
(a≠0)
根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上
∴
,解之得:![]()
∴y=x2-2x-3····································································································· 3分
自变量范围:-1≤x≤3····························································· 4分
(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,
在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=![]()
在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
∴点C、E的坐标分别为(0,
),(-3,0) ·················································· 6分
∴切线CE的解析式为
··························································· 8分
(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ························· 9分
由题意可知方程组
只有一组解
即
有两个相等实根,∴k=-2············································· 11分
∴过点D“蛋圆”切线的解析式y=-2x-3····················································· 12分
24.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
![]()
(08湖南益阳24题解析)七、(本题12分)
12.(08湖南长沙)26.如图,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.
(1)当∠BAD=75°时,求的长;
(2)求证:BC∥AD∥FE;
(3)设AB=
,求六边形ABCDEF的周长L关于
的函数关系式,并指出
为何值时,L取得最大值.
(08湖南长沙26题解析)26.(1)连结OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°,······ (1分)
∵AB=CD,∴∠COD=∠AOB=30°,∴∠BOC=120°,···································· (2分)
故的长为
.··························································································· (3分)
(2)连结BD,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD,································· (5分)
同理EF∥AD,从而BC∥AD∥FE.································································· (6分)
(3)过点B作BM⊥AD于M,由(2)知四边形ABCD为等腰梯形,
从而BC=AD-2AM=2r-2AM.············································································ (7分)
∵AD为直径,∴∠ABD=90°,易得△BAM∽△DAB
∴AM=
=
,∴BC=2r-
,同理EF=2r-
············································ (8分)
∴L=4x+2(2r-
)=
=
,其中0<x<
·········· (9分)
∴当x=r时,L取得最大值6r.······································································ (10分)
13(08湖南益阳)七、(本题12分)
11.(08湖北咸宁)24.(本题(1)-(3)小题满分12分,(4)小题为附加题另外附加2分)
如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.
(1) 当P点在边AB上运动时,点Q的横坐标
(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2) 求正方形边长及顶点C的坐标;
(3) 在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.
(1) 附加题:(如果有时间,还可以继续
解答下面问题,祝你成功!)
如果点P、Q保持原速度速度不
变,当点P沿A→B→C→D匀
速运动时,OP与PQ能否相等,
若能,写出所有符合条件的t的
值;若不能,请说明理由.
(08湖北咸宁24题解析)24.解:(1)
(1,0)
-----------------------------1分
点P运动速度每秒钟1个单位长度.-------------------------------3分
(2) 过点
作BF⊥y轴于点
,
⊥
轴于点
,则
=8,
.
∴
.
在Rt△AFB中,
.----------------------------5分
过点
作
⊥
轴于点
,与
的延长线交于点
.
∵
∴△ABF≌△BCH.
∴
.
∴
.
∴所求C点的坐标为(14,12).------------7分
(3) 过点P作PM⊥y轴于点M,PN⊥
轴于点N,
则△APM∽△ABF.
∴
.
.
∴
. ∴
.
设△OPQ的面积为
(平方单位)
∴
(0≤
≤10) ------------------10分
说明:未注明自变量的取值范围不扣分.
∵
<0 ∴当
时, △OPQ的面积最大.------------11分
此时P的坐标为(
,
) .
---------------------------------12分
(4) 当
或
时, OP与PQ相等.---------------------------14分
对一个加1分,不需写求解过程.
10.(08湖北武汉)(本题答案暂缺)25.(本题 12分)如图 1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD面积二等分,求k的值;(3)如图2,过点 E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转 180°后得△MNQ(点M,N,Q分别与 点 A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
![]()
(08湖北武汉25题解析)25.⑴
;⑵
;⑶M(3,2),N(1,3)
9.(08湖北天门)(本题答案暂缺)24.(本小题满分12分)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒
个单位长度的速度向终点B运动.设运动了x秒.
(1)点N的坐标为(________________,________________);(用含x的代数式表示)
(2)当x为何值时,△AMN为等腰三角形?
(3)如图②,连结ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度和此时x的值.
8.(08湖北荆州25题解析)(本题答案暂缺)25.(本题12分)如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线
的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.
7.(08湖北荆门)28.(本小题满分12分)
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.
(1) 求抛物线的解析式;
(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;
(3) 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?
(08湖北荆门28题解析)28.解:(1)由抛物线过B(0,1) 得c=1.
又b=-4ac, 顶点A(-
,0),
∴-
=![]()
=2c=2.∴A(2,0). ………………………………………2分
将A点坐标代入抛物线解析式,得4a+2b+1=0 ,
∴
解得a =
,b =-1.
故抛物线的解析式为y=
x2-x+1. ………………………………………4分
另解: 由抛物线过B(0,1) 得c=1.又b2-4ac=0, b=-4ac,∴b=-1. ………2分
∴a=
,故y=
x
-x+1.
……………………………………………4分
(2)假设符合题意的点C存在,其坐标为C(x,y),
作CD⊥x轴于D ,连接AB、AC.
∵A在以BC为直径的圆上,∴∠BAC=90°.
∴ △AOB∽△CDA.
∴OB·CD=OA·AD.
即1·y=2(x-2), ∴y=2x-4. ……………………6分
由
解得x1=10,x2=2.
∴符合题意的点C存在,且坐标为 (10,16),或(2,0). ………………………8分
∵P为圆心,∴P为BC中点.
当点C坐标为 (10,16)时,取OD中点P1 ,连PP1 , 则PP1为梯形OBCD中位线.
∴PP1=
(OB+CD)=
.∵D (10,0), ∴P1 (5,0), ∴P (5,
).
当点C坐标为 (2,0)时, 取OA中点P2 ,连PP2 , 则PP2为△OAB的中位线.
∴PP2=
OB=
.∵A (2,0), ∴P2(1,0), ∴P (1,
).
故点P坐标为(5,
),或(1,
). ……………………………………10分
(3)设B、P、C三点的坐标为B(x1,y1), P(x2,y2), C(x3,y3),由(2)可知:
………………………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com