88.(08山东济宁26题)(12分)
![]()
中,
,
,
cm.长为1cm的线段
在
的边
上沿
方向以1cm/s的速度向点
运动(运动前点
与点
重合).过
分别作
的垂线交直角边于
两点,线段
运动的时间为
s.
(1)若
的面积为
,写出
与
的函数关系式(写出自变量
的取值范围);
(2)线段
运动过程中,四边形
有可能成为矩形吗?若有可能,求出此时
的值;若不可能,说明理由;
(3)
为何值时,以
为顶点的三角形与
相似?
(08山东济宁26题解析)解:(1)当点
在
上时,
,
.
.········································································ 2分
当点
在
上时,
.
.·················································· 4分
(2)
,
.
.
.········································································ 6分
由条件知,若四边形
为矩形,需
,即
,
.
当
s时,四边形
为矩形.································································· 8分
(3)由(2)知,当
s时,四边形
为矩形,此时
,
.··························································································· 9分
除此之外,当
时,
,此时
.
,
.
.····························· 10分
,
.
又
,
.········································ 11分
,
.
当
s或
s时,以
为顶点的三角形与
相似.··················· 12分
87.(08青海省卷28题)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间
(单位:分钟)与学习收益量
的关系如图甲所示,用于回顾反思的时间
(单位:分钟)与学习收益量
的关系如图乙所示(其中
是抛物线的一部分,
为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求王亮解题的学习收益量
与用于解题的时间
之间的函数关系式,并写出自变量
的取值范围;
(2)求王亮回顾反思的学习收益量
与用于回顾反思的时间
之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量
解题的学习收益量
回顾反思的学习收益量)
(08青海省卷28题解析)解:(1)设
,
把
代入,得
.
.······································································································ (1分)
自变量
的取值范围是:
.···························································· (2分)
(2)当
时,
设
,···················································································· (3分)
把
代入,得
,
.
.································································· (5分)
当
时,
············································································································· (6分)
即
.
(3)设王亮用于回顾反思的时间为
分钟,学习效益总量为
,
则他用于解题的时间为
分钟.
当
时,
.························· (7分)
当
时,
.············································································ (8分)
当
时,
.····································································· (9分)
随
的增大而减小,
当
时,
.
综合所述,当
时,
,此时
.································ (10分)
即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大.
······················································································································· (11分)
86.(08青海西宁28题)如图14,已知半径为1的
与
轴交于
两点,
为
的切线,切点为
,圆心
的坐标为
,二次函数
的图象经过
两点.
(1)求二次函数的解析式;
(2)求切线
的函数解析式;
(3)线段
上是否存在一点
,使得以
为顶点的三角形与
相似.若存在,请求出所有符合条件的点
的坐标;若不存在,请说明理由.
(08青海西宁28题解析)解:(1)
圆心
的坐标为
,
半径为1,
,
……1分
二次函数
的图象经过点
,
可得方程组
················································································ 2分
解得:![]()
二次函数解析式为
············································· 3分
(2)过点
作
轴,垂足为
.······························································· 4分
是
的切线,
为切点,
(圆的切线垂直于经过切点的半径).
在
中,![]()
为锐角,
···························· 5分
,
在
中,
.
.
点
坐标为
························································································· 6分
设切线
的函数解析式为
,由题意可知
,
······ 7分
切线
的函数解析式为
···································································· 8分
(3)存在.············································································································ 9分
①过点
作
轴,与
交于点
.可得
(两角对应相等两三角形相似)
,
············································ 10分
②过点
作
,垂足为
,过
点作
,垂足为
.
可得
(两角对应相等两三角开相似)
在
中,
,
,
在
中,
,
,
······································· 11分
符合条件的
点坐标有
,
······················································ 12分
85.(08内蒙古赤峰25题)(本题满分14分)
在平面直角坐标系中给定以下五个点
.
(1)请从五点中任选三点,求一条以平行于
轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点
在抛物线的对称轴上,直线
过点
且垂直于对称轴.验证:以
为圆心,
为半径的圆与直线
相切.请你进一步验证,以抛物线上的点
为圆心
为半径的圆也与直线
相切.由此你能猜想到怎样的结论.
(08内蒙古赤峰25题解析)25.解:(1)设抛物线的解析式为
,
且过点
,
由
在
H .
则
.········································································································ (2分)
得方程组
,
解得
.
抛物线的解析式为
················ (4分)
(2)由
············· (6分)
得顶点坐标为
,对称轴为
.·········· (8分)
(3)①连结
,过点
作直线
的垂线,垂足为
,
则
.
在
中,
,
,
,
,
以
点为圆心,
为半径的
与直线
相切.····························· (10分)
②连结
过点
作直线
的垂线,垂足为
.过点
作
垂足为
,
则
.
在
中,
,
.
.
以
点为圆心
为半径的
与直线
相切.································ (12分)
③以抛物线上任意一点
为圆心,以
为半径的圆与直线
相切.····· (14分)
84.
(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
,抛物线
经过
三点.
(1)求过
三点抛物线的解析式并求出顶点
的坐标;
(2)在抛物线上是否存在点
,使
为直角三角形,若存在,直接写出
点坐标;若不存在,请说明理由;
(3)试探究在直线
上是否存在一点
,使得
的周长最小,若存在,求出
点的坐标;若不存在,请说明理由.
(08辽宁12市26题解析)
解:(1)
直线
与
轴交于点
,与
轴交于点
.
,
························································································· 1分
点
都在抛物线上,
![]()
抛物线的解析式为
························································ 3分
顶点
······························································································· 4分
(2)存在··············································································································· 5分
············································································································· 7分
············································································································ 9分
(3)存在·············································································································· 10分
理由:
解法一:
延长
到点
,使
,连接
交直线
于点
,则点
就是所求的点.
····················································································· 11分
过点
作
于点
.
点在抛物线
上,![]()
在
中,
,
,
,
在
中,
,
,
,
··············································· 12分
设直线
的解析式为![]()
解得![]()
································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
.··· 14分
解法二:
过点
作
的垂线交
轴于点
,则点
为点
关于直线
的对称点.连接
交
于点
,则点
即为所求.················································································ 11分
过点
作
轴于点
,则
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
为线段
的垂直平分线,可证得
为等边三角形,
垂直平分
.
即点
为点
关于
的对称点.
············································· 12分
设直线
的解析式为
,由题意得
解得![]()
································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
.··· 14分
83.
(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形
的边
在
轴的负半轴上,边
在
轴的正半轴上,且
,
,矩形
绕点
按顺时针方向旋转
后得到矩形
.点
的对应点为点
,点
的对应点为点
,点
的对应点为点
,抛物线
过点
.
(1)判断点
是否在
轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在
轴的上方是否存在点
,点
,使以点
为顶点的平行四边形的面积是矩形
面积的2倍,且点
在抛物线上,若存在,请求出点
,点
的坐标;若不存在,请说明理由.
(08辽宁沈阳26题解析)解:(1)点
在
轴上················································· 1分
理由如下:
连接
,如图所示,在
中,
,
,![]()
,![]()
由题意可知:![]()
![]()
点
在
轴上,
点
在
轴上.········································································· 3分
(2)过点
作
轴于点![]()
,![]()
在
中,
,![]()
点
在第一象限,
点
的坐标为
·························································································· 5分
由(1)知
,点
在
轴的正半轴上
点
的坐标为![]()
点
的坐标为
···························································································· 6分
抛物线
经过点
,
![]()
由题意,将
,
代入
中得
解得![]()
所求抛物线表达式为:
······················································· 9分
(3)存在符合条件的点
,点
.········································································· 10分
理由如下:
矩形
的面积![]()
以
为顶点的平行四边形面积为
.
由题意可知
为此平行四边形一边,
又![]()
边上的高为2··································································································· 11分
依题意设点
的坐标为![]()
点
在抛物线
上
![]()
解得,
,![]()
,![]()
以
为顶点的四边形是平行四边形,
![]()
,
,
当点
的坐标为
时,
点
的坐标分别为
,
;
当点
的坐标为
时,
点
的坐标分别为
,
.··············································· 14分
82.(08广东肇庆25题)(本小题满分10分)
已知点A(a,
)、B(2a,y
)、C(3a,y
)都在抛物线
上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有
、y
、y
,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
(08广东肇庆25题解析)(本小题满分10分)
解:(1)由5
=0,·············································································· (1分)
得
,
.·················································································· (2分)
∴抛物线与x轴的交点坐标为(0,0)、(
,0).······································· (3分)
(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),······························ (4分)
分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有
=S
-
-
···················································· (5分)
=
-
-
···································· (6分)
=5(个单位面积)········································································ (7分)
(3)如:
. ········································································· (8分)
事实上,
=45a2+36a.
3(
)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············ (9分)
∴
. ···················································································· (10分)
81.(08广东茂名25题)(本题满分10分)
如图,在平面直角坐标系中,抛物线
=-![]()
![]()
+![]()
+
经过A(0,-4)、B(![]()
,0)、 C(![]()
,0)三点,且![]()
-![]()
=5.
(1)求
、
的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解:
(08广东茂名25题解析)解:(1)解法一:
∵抛物线
=-![]()
![]()
+![]()
+
经过点A(0,-4),
∴
=-4 ……1分
又由题意可知,![]()
、![]()
是方程-![]()
![]()
+![]()
+
=0的两个根,
∴![]()
+![]()
=![]()
,
![]()
![]()
![]()
=-![]()
=6··································································· 2分
由已知得(![]()
-![]()
)
=25
又(![]()
-![]()
)
=(![]()
+![]()
)
-4![]()
![]()
![]()
=![]()
![]()
-24
∴ ![]()
![]()
-24=25
解得
=±
··········································································································· 3分
当
=
时,抛物线与
轴的交点在
轴的正半轴上,不合题意,舍去.
∴
=-
. ·········································································································· 4分
解法二:∵![]()
、![]()
是方程-![]()
![]()
+![]()
+c=0的两个根,
即方程2![]()
-3![]()
+12=0的两个根.
∴
=
,··········································································· 2分
∴![]()
-![]()
=
=5,
解得
=±
······························································································· 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵
=-![]()
![]()
-![]()
-4=-
(
+
)
+
································· 6分
∴抛物线的顶点(-
,
)即为所求的点D.······································· 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线
=-3与
抛物线
=-![]()
![]()
-![]()
-4的交点, ···························································· 8分
∴当
=-3时,
=-
×(-3)
-
×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ·················· 9分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上.······································································································· 10分
76.(08天津市卷26题)(本小题10分)
已知抛物线
,
(Ⅰ)若
,
,求该抛物线与
轴公共点的坐标;
(Ⅱ)若
,且当
时,抛物线与
轴有且只有一个公共点,求
的取值范围;
(Ⅲ)若
,且
时,对应的
;
时,对应的
,试判断当
时,抛物线与
轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(08天津市卷26题解析)解(Ⅰ)当
,
时,抛物线为
,
方程
的两个根为
,
.
∴该抛物线与
轴公共点的坐标是
和
.
················································ 2分
(Ⅱ)当
时,抛物线为
,且与
轴有公共点.
对于方程
,判别式
≥0,有
≤
. ········································ 3分
①当
时,由方程
,解得
.
此时抛物线为
与
轴只有一个公共点
.·································
4分
②当
时,
时,
,
时,
.
由已知
时,该抛物线与
轴有且只有一个公共点,考虑其对称轴为
,
应有
即![]()
解得
.
综上,
或
. ················································································ 6分
(Ⅲ)对于二次函数
,
由已知
时,
;
时,
,
又
,∴
.
于是
.而
,∴
,即
.
∴
.
············································································································ 7分
∵关于
的一元二次方程
的判别式
,
∴抛物线
与
轴有两个公共点,顶点在
轴下方.····························· 8分
又该抛物线的对称轴
,
由
,
,
,
得
,
∴
.
又由已知
时,
;
时,
,观察图象,
可知在
范围内,该抛物线与
轴有两个公共点. ············································ 10分
77(08湖北宜昌25题)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax
+bx+c的顶点,且在双曲线y=
上时,求这时四边形OABC的面积.
(08湖北宜昌25题解析)解:(1) 从图中可知,当P从O向A运动时,△POC的面积S=
mz, z由0逐步增大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分)
同理,AB=1,故点B的坐标是(1,2).(2分)
(2)解法一:
∵抛物线y=ax
+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分)
∴抛物线为y=ax
-amx,顶点坐标为(
,-am2).(4分)
如图1,设经过点O,C,P的抛物线为l.
当P在OA上运动时,O,P都在y轴上,
这时P,O,C三点不可能同在一条抛物线上,
∴这时抛物线l不存在, 故不存在m的值..①
当点P与C重合时,双曲线y=
不可能经过P,
故也不存在m的值.②(5分)
(说明:①②任做对一处评1分,两处全对也只评一分)
当P在AB上运动时,即当0<x
≤1时,y
=2,
抛物线l的顶点为P(
,2).
∵P在双曲线y=
上,可得 m=
,∵
>2,与 x
=
≤1不合,舍去.(6分)③
容易求得直线BC的解析式是:
,(7分)
当P在BC上运动,设P的坐标为 (x
,y
),当P是顶点时 x
=
,
故得y
=
=
,顶点P为(
,
),
∵1< x
=
<m,∴m>2,又∵P在双曲线y=
上,
于是,
×
=
,化简后得5m
-22m+22=0,
解得
,
,(8分)![]()
![]()
![]()
与题意2<x
=
<m不合,舍去.④(9分)
故由①②③④,满足条件的只有一个值:
.
这时四边形OABC的面积=
=
.(10分)
(2)
解法二:
∵抛物线y=ax
+bx+c经过点O(0,0),C(m ,0)
∴c=0,b=-am,(3分)
∴抛物线为y=ax
-amx,顶点坐标P为(,-am2). (4分)
∵m>1,∴>0,且≠m,
∴P不在边OA上且不与C重合. (5分)
∵P在双曲线y=上,∴×(- am2)=即a=- .
.①当1<m≤2时,<≤1,如图2,分别过B,P作x轴的垂线,
M,N为垂足,此时点P在线段AB上,且纵坐标为2,
∴-am2=2,即a=-.
而a=- ,∴- =-,m=>2,而1<m≤2,不合题意,舍去.(6分)
②当m≥2时,>1,如图3,分别过B,P作x轴的垂线,M,N为垂足,ON>OM,
此时点P在线段CB上,易证Rt△BMC∽Rt△PNC,
∴BM∶PN=MC∶NC,即: 2∶PN=(m-1)∶,∴PN=(7分)
而P的纵坐标为- am2,∴=- am2,即a=
而a=-,∴- =
化简得:5m2-22m+22=0.解得:m= ,(8分)
但m≥2,所以m=舍去,(9分)
取m = .
由以上,这时四边形OABC的面积为:
(AB+OC) ×OA=(1+m) ×2=. (10分)
74.(08广东东莞22题)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边
AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.
(2)请写出图9中所有的相似三角形(不含全等三角形).
(3)如图10,若以AB所在直线为
轴,过点A垂直于AB的直线为
轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向
轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
(08广东东莞22题解析)解:(1)
,
,…………………………1分
等腰;…………………………2分
(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)
①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)
②△ABD∽△EAD,△ABD∽△EBC;(有2对)
③△BAC∽△EAD,△BAC∽△EBC;(有2对)
所以,一共有9对相似三角形.…………………………………………5分
(3)由题意知,FP∥AE,
∴ ∠1=∠PFB,
又∵ ∠1=∠2=30°,
∴ ∠PFB=∠2=30°,
∴ FP=BP.…………………………6分
过点P作PK⊥FB于点K,则
.
∵ AF=t,AB=8,
∴ FB=8-t,
.
在Rt△BPK中,
. ……………………7分
∴ △FBP的面积
,
∴ S与t之间的函数关系式为:
,或
. …………………………………8分
t的取值范围为:
. …………………………………………………………9分
75(08甘肃兰州28题)(本题满分12分)如图19-1,
是一张放在平面直角坐标系中的矩形纸片,
为原点,点
在
轴的正半轴上,点
在
轴的正半轴上,
,
.
(1)在
边上取一点
,将纸片沿
翻折,使点
落在
边上的点
处,求
两点的坐标;
(2)如图19-2,若
上有一动点
(不与
重合)自
点沿
方向向
点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为
秒(
),过
点作
的平行线交
于点
,过点
作
的平行线交
于点
.求四边形
的面积
与时间
之间的函数关系式;当
取何值时,
有最大值?最大值是多少?
(3)在(2)的条件下,当
为何值时,以
为顶点的三角形为等腰三角形,并求出相应的时刻点
的坐标.
(08甘肃兰州28题解析)(本题满分12分)
解:(1)依题意可知,折痕
是四边形
的对称轴,
在
中,
,
.
.
.
点坐标为(2,4).································································································ 2分
在
中,
, 又
.
. 解得:
.
点坐标为
···································································································· 3分
(2)如图①
,
.
,又知
,
,![]()
, 又
.
而显然四边形
为矩形.
·························································· 5分
,又![]()
当
时,
有最大值
.········································································ 6分
(3)(i)若以
为等腰三角形的底,则
(如图①)
在
中,
,
,
为
的中点,
![]()
.
又
,
为
的中点.
过点
作
,垂足为
,则
是
的中位线,
,
,
当
时,
,
为等腰三角形.
此时
点坐标为
.··························································································· 8分
(ii)若以
为等腰三角形的腰,则
(如图②)
在
中,
.
过点
作
,垂足为
.
,
.
.
,
.
,
,
当
时,(
),此时
点坐标为
.·························· 11分
综合(i)(ii)可知,
或
时,以
为顶点的三角形为等腰三角形,相应
点的坐标为
或
.·········································································································· 12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com