欧几里得几何曾经是完美的经典几何学,其中的公理5:“过直线外一点有且只有一条直线与已知直线平行”和结论“三角形内角和等于二直角”,这些似乎是天经地义的绝对真理。但罗马切夫斯基却采用了不同公理5的结论:“过直线外一点至少有两条直线与已知直线平行”,在这种几何里,“三角形内角和小于二直角”,从而创造了罗氏几何。黎曼几何学没有平行线。这些与传统观念相违背的理论,并不是虚无飘渺的,当我们进行遥远的天文测量时,用罗氏几何学是很方便的,原子物理、狭义相对论中也有应用;而爱因斯坦建立的广义相对论中,较多地利用了黎曼几何这个工具,才克服了所遇到的数学计算上的困难。每一个理论都在需要不断创新,每一个奇思妙想、每一个似乎不合理又不可思议的念头都可能开辟新的天地。这种开阔了我们的视野、开阔了我们心胸、给我们完全不同感受的难到不是切入肌肤的美吗?如果我们再大胆设想一下,是不是还存在一个能包容欧氏几何和非欧几何的更广泛的几何学呢?事实上,通过高斯曲率可以将三种几何统一在曲面的内在几何学中,还可以通过克莱因几何学与变换群的观点将三种几何统一起来。在不断创新的过程中,数学得到了发展。
在古代“对称”一词的含义是“和谐”、“美观”。事实上,译自希腊语的这个词,原义是“在一些物品的布置时出现的般配与和谐”。毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。
梯形的面积公式:S=
,
等差数列的前n项和公式:
,
其中a是上底边长,b是下底边长,其中a1是首项,an是第n项,这两个等式中,a与a1是对称的,b与an是对称的。
h与n是对称的。
对称不仅美,而且有用。
电磁波的波动方程:![]()
其中,B为磁场强度,E为电场强度,C为光速。这个方程中B与E是对称的,麦克斯韦用纯数学的方法从这些方程中推导出可能存在的电磁波,这种电磁波后来被赫芝发现,由此可得电场与磁场的统一性。
对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。如格点对称,十四世纪在西班牙的格拉那达的阿尔汉姆拉宫,存在所有的格点对称,而1924年才证明出格点对称的种类。此外,还有格度对称,如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。李政道、杨振宁也正是由对称的研究而发现了宇称不守恒定律。从中我们体会到了对称的美与成功。
全世界有很大影响的两份杂志曾联合邀请全世界的数学家们评选“近50年的最佳数学问题”,其中有一道相当简单的问题:有哪些分数
,不合理地把b约去得到
,结果却是对的?
经过一种简单计算,可以找到四个分数:
。这个问题涉及到“运算谬误,结果正确”的歪打正着,在给人惊喜之余,不也展现一种奇异美吗。
还有一些“歪打正着等式”,比如
![]()
人造卫星、行星、彗星等由于运动的速度的不同,它们的轨道可能是椭圆、双曲线或抛物线,这几种曲线的定义如下:
到定点距离与它到定直线的距离之比是常数e的点的轨迹,
当e<1时,形成的是椭圆.
当e>1时,形成的是双曲线.
当e=1时,形成的是抛物线.
常数e由0.999变为1、变为0.001,相差很小,形成的却是形状、性质完全不同的曲线。而这几种曲线又完全可看作不同的平面截圆锥面所得到的截线。
椭圆与正弦曲线会有什么联系吗?做一个实验,把厚纸卷几次,做成一个圆筒。斜割这一圆筒成两部分。如果不拆开圆筒,那么截面将是椭圆,如果拆开圆筒,切口形成的即是正弦曲线。这其中的玄妙是不是很奇异、很美。
无序的混沌状态,通常以为不可用数学来研究。可从确定的现象(一个二次函数λx(1-x))通过迭代居然能产生出随机现象,也就是说无序的混沌状态,竟然可以从一个二次方程的迭代产生出来。这就把两种完全不同类型的数学问题沟通起来了。这深刻的发现,使人不禁感叹大自然规律的神奇。还有,菲根鲍姆对许多迭代函数进行了大量的计算,都得到了常数4.669201629…,这决非巧合,尽管目前还不清楚这个数的本质。就是数学的这种奇异美使神秘、严肃、程式化的数学世界充满了勃勃生机。
数论大师赛尔伯格曾经说,他喜欢数学的一个动机是以下的公式:
,这个公式实在美极了,奇数1、3、5、…这样的组合可以给出
,对于一个数学家来说,此公式正如一幅美丽图画或风景。
欧拉公式:
,曾获得“最美的数学定理”称号。欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。与欧拉公式有关的棣美弗-欧拉公式是
――(1)。这个公式把人们以为没有什么共同性的两大类函数――三角函数与指数函数紧密地结合起来了。对他们的结合,人们始则惊诧,继而赞叹――确是“天作之合”,因为,由他们的结合能派生出许多美的,有用的结论来。
比如,由公式(1)得
。由这两个公式,可把三角函数的定义域扩展到复数域上去,即考虑“弧度”为复数的“角”。新定义的余弦函数与我们早已熟悉的通常的余弦函数和谐一致。
和谐的美,在数学中多得不可胜数。如著名的黄金分割比
,即0.61803398…。
在正五边形中,边长与对角线长的比是黄金分割比。
数学中有一个很著名的菲波那契数列{an},定义如下:
a1=1,a2=1,
当n≥3时,an=an-1+an-2
可以证明,当n趋向∞时,
极限是
。
维纳斯的美被所有人所公认,她的身材比也恰恰是黄金分割比。
黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。达·芬奇称黄金分割比
为“神圣比例”.他认为“美感完全建立在各部分之间神圣的比例关系上”。
与
有关的问题还有许多, “黄金分割”、“神圣比例”的美称,她受之无愧。
爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。
欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?由她还可派生出许多同样美妙的东西。如:平面图的点数V、边数E、区域数F满足V-E+F=2,这个公式成了近代数学两个重要分支--拓扑学与图论的基本公式。由这个公式可以得到许多深刻的结论,对拓扑学与图论的发展起了很大的作用。
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:
圆的周长公式:C=2πR
勾股定理:直角三角形两直角边的平方和等于斜边平方。
平均不等式:对任何正数![]()
正弦定理:ΔABC的外接圆半径R,则![]()
数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
3.研究学科特点,寻找最佳学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的.
4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com